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Review
Hill's equation z" + K(s)z =0
quasi — periodic ansatz solution xz(s) = A+/B(s) cos|p(s) + ¢o]

3 ) :1—|—oz(s)2
B(s)=B(s+C) ~(s) = B(s)
Ly o [ s

(m) _ (cos Adc + a(s) sin Ape B(s) sin Agc ) (az)
so+C S0

CC,

—(s) sin Agc cos Apc — a(s) sin Ageo
ot (s
betatron phase advance | A¢pc = / B(s) Tr M = 2 cos Agc
S0 S

M = Icos Apc + JsinApe I = ((1) (1)) J = (_O;((Sg) —50(42))

Ag¢
| JP=-1 = M= 8 ey
4 DE
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Transport Matrix Stability Criteria

* Forlong systems (rings) we want M™ (xﬁ)) stable as n —

L

If 2x2 M has eigenvectors (V1, V2) and eigenvalues (A1, \2):

T

M™ (‘”0) = AN'V) + BALV,

M is also unimodular (det M=1) so \; » = e=* with complex ¢
= For A\, to remain bounded, ¢ must be real

= We can always transform M into diagonal form with the
eigenvalues on the diagonal (since det M=1); this does not
change the trace of the matrix

e+ e =2cosp=Tr M
The stability requirement for these types of matrices is then

1
preal = —1§§TrM§1

> JSA
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Periodic Example: FODO Cell Phase Advance

cell

G IO A

—2f L/2 f L/2 —2f

» Select periodicity between centers of focusing quads
= A natural periodicity if we want to calculate maximum f(s)

(6 DG D6 D0 Y

1—- L, L4 L2
Mz( 81 4f+2 Tr M =2cos Apc =2 — ——

L2 L {_ L 412

16f% — 4f2  ~  8f2
L? A A L
1—@2008A¢c:1—281n2 ;bc = sin ;bc :iﬂ

= A¢c only has real solutions (stability) if % < f

> JSA
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Periodic Example: FODO Cell Beta Max/Min

cell

G IO A

—2f L/2 f L/2 —2f

= Whatis 3?
= A natural periodicity if we want to calculate maximum f(s)

1 - L4 My, = Bsin A
M _ ( 8f2 Af p— 12 — BSIH ch

L?* L 1 — L?

16f3 ~ 4f2 8 f2
Bsin A¢ (14 s 2% p= L& (14smB0C
Saee = 4f N S 2 ~ sin A¢c 2

» Follow a similar strategy reversing F/D quadrupoles to find
the minimum p(s) within a FODO cell (center of D quad)

> L . A¢c
b= Snido (1_Sm > )

> JSA
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FODO Betatron Functions vs Phase Advance
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Generally want beta_max/L small

Strong focusing
Smaller magnets
Less expensive accelerator
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FODO Beta Function, Betatron Motion

Betatron motion
trajectory j\

b
DF D — fPb FDFDFDF\FD
vy

= This is a picture of a FODO lattice, showing contours ofi\/
since the particle motion goes like x(s) = Ay/5(s) cos|p(s) + gbo]

* This also shows a particle oscillating through the Iattlce

= Note that v/3(s) provides an “envelope” for particle oscillations
B(s) is sometimes called the envelope function for the lattice

= Min beta is at defocusing quads, max beta is at focusing quads
= 6.5 periodic FODO cells per betatron oscillation
= A¢c = 360°/6.5 ~ 55°

@
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Example: RHIC FODO Lattice
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= 1/6 of one of two RHIC synchrotron rings, injection lattice
= FODO cell length is about L=30m
= Phase advance per FODO cell is about A¢pc = 77° = 1.344 rad

A L A
6:,—<1+Sin ¢C)%53m
sin Agc 2 o
oL (1_snB9) ~sx
= Sndoc sin — ~ 8.7 m

- JSA
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General Non-Periodic Transport Matrix

» We can parameterize a general non-periodic transport
matrix from s, to s, using the lattice parameters

B(2) [cos Ag + a(sy) sin Ag)] /BB (52) sin Ag
M(SQ) = [a(82>6_(21(l1)] cos A¢p+[1+a(sy)a(sz)] sin Ag B(s1) .
- v/ B(51)B(s2) B(s2) [cos Ap — a(s2) sin A¢)]

* This does not have a pretty form like the periodic matrix
However both can be expressed as (C S )
M = / /
c’ S
where the C and S terms are cosine-like and sine-like; the
second row is the s-derivative of the first row!

The most common use of this matrix is the m,, term:

Effect of le kick
\/6 31 52 Sln(A¢) ( ) on do?/vcnsotr:g%%olsci;tion

D JSA
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(Deriving the Non-Periodic Transport Matrix)
x(s) = Aw(s) cos ¢(s) + Bw(s)sin ¢(s)

r'(s)=A (w’(s) cos ¢(s) — Sizzbs(;)) + B (w’(s) sin ¢(s) + CO;Z()S))

Calculate A, B in terms of initial conditions (%0, Z4) and (wo, ¢o)

A= (w6 sin ¢ + o8 ¢0> xo — (wo sin ¢ )y
wWo

B=— (w6 COS g — S ¢O) zo + (wo cos ¢ )z

Substitute (A,B) and put into moatrix form: ({fféé) = (2; 2;2) ( )
mi1(s) = wugs) cos A¢ — w(s)wy, sin Ag Aqﬁ gb(s) b0
0
— /B(s)
mi2(s) = w(s)wg sin Ag
1T+ w(s)wow'(s)w wy  w'(s)
mo1(s) = — w(3)0 sin A¢ {w(s) B ] cos A¢
Moo (s) = wu(Jg) cos A¢p + wow’ sin A¢

> JSA
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Propagating Lattice Parameters

= |f I have (B,,7)(s1) and | have the transport matrix M (sq, s2)
that transports particles from s1 — s2, how do | find the
new lattice parameters (5, @, 7)(s2) ?

M(s1,81 +C)=1Tcosu+ Jsinpy = (COSM+04(S1)81HM B(s1)sin p ) _ (mn m12>

—(s1) sin i cos p — a(sy) sin p mo1 Moo
The J(s) matrices at s, s, are related by '//;::;\\;\;\
J(s2) = M (sq, SQ)J(81>M_1(81, So) :\ '\/s . /) :
Then expand, using det M=1 \Q\\\\c’t;/
(04(82) B(s2) ) _ (mll m12) (Oé(Sl) B(s1) ) ma22 —m12)
—7(s2) —af(s2) mo1 Moz ) \—7(s1) —als1)) \—ma1  mn

2 2
82) miq —2m11m12 mio
04(82) = | —m11Mma1 Mi11Mo2 + M12Ma1 —M127M22

msq —2ma1ma2 mag

D JSA
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X' [mrad]

.
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* Area of an ellipse that envelops a given percentage of the
beam particles in phase space is related to the emittance

We can express this in terms of our lattice functions!
JSA
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Invariants and Ellipses

= A+\/B(s) cos[p(s) + o]

» We assumed A was constant, an invariant of the motion
A can be expressed in terms of initial coordinates to find
W = A% = yox5 + 209T0Th + Boxl
This is known as the Courant-Snyder invariant: for all s,
W = y(s)x(s)* + 2a(s)z(s)a’(s) + B(s)a'(s)’
Similar to total energy of a simple harmonic oscillator
W looks like an elliptical area in («, ') phase space
Our matrices look like scaled rotations (elllpses) in phase space

(A4)

02 s=sq 1 [ s= so+C - s= so+2C - s= so+3C

x' [mrad)]

1 1 1 L L 1 1 1 L L 1 1 1 L L 1 1 1 L L
-4 -2 0 2 4 4 -2 0 2 4 4 -2 0 2 4 4 -2 0 2 4
x [mm], step=14 x [mm], step=14 x [mm], step=14 x [mm], step=14
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Emittance

*» The area of the ellipse inscribed by any given particle in
phase space as it travels through our accelerator is called
the emittance €:itis constant @4 and given by

e =W = m[y(s)z(s)? + 2a(s)z(s)z'(s) + B(s)z’(s)?]

Emittance is often quoted as the area of the ellipse that would
contain a certain fraction of all (Gaussian) beam particles

e.g. RMS emittance contains 39% of 2D beam particles
Related to RMS beam size orws o [

orMS = V €3(5) I
Yes, this RMS beam size depends on s! [

RMS emittance convention is fairly standard S
for electron rings, with units of mm-mrad X

D JSA
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Adiabatic Damping and Normalized Emittance

= But assumption @4 is violated when we accelerate!
= \When we accelerate, invariant emittance is not invariant!
We are defining areas in (2, ') phase space
The definition of x doesn’t change as we accelerate
But 2’ = dx/ds = p,/po does since po changes!
Po scales with relativistic beta, gamma: po o< 5,7
This has the effect of compressing x’ phase space by 57

.}effergon Lab

x' [mrad)]

02 +

01 f

0+

01

02 +

Normalized emittance is the invariant in this case eny = [,7,€
unnormalized emittance goes down as we accelerate
This is called adiabatic damping, important in, e.g., linacs

T. Satogata / Fall 2011
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Phase Space Ellipse Geography
02 b | T

01

0

x' [mrad]

0.1

02 +

x1 x2 -
-4 -2 0 2

x [mm], step=14

b

* Now we can figure out some things from a phase space
ellipse at a given s coordinate:

z1 = VW/7(s)

Y1 = \/W/ﬁ(s)

)
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Rings and Tunes

» A synchrotron is by definition a periodic focusing system
= |tis very likely made up of many smaller periodic regions too
= We can write down a periodic one-turn matrix as before

0 1 —(s)  —a(s)

M = I cos Aopc + Jsin Ao [:<1 0) J:(O‘(S) B(s)

)

= Recall that we defined tune as the total betatron phase
advance in one revolution around a ring divided by 27

.!effergon Lab

Qx,y —

Aqu,y _
2T

A0

1 ds

Horizontal Betatron Oscillation
with tune: Qp, = 6.3,
i.e., 6.3 oscillations per

T. Satogata / Fall

turn.
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Vertical Betatron Oscillation

with tune: Qy =7.5,
i.e., 7.5 oscillations per turn.
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Tunes

= There are horizontal and vertical tunes
= turn by turn oscillation frequency

= Tunes are a direct indication of the amount of focusing in
an accelerator

= Higher tune implies tighter focusing, lower (Bz,y(5))

= Tunes are a critical parameter for accelerator performance
= Linear stability depends greatly on phase advance
= Resonant instabilities can occur when n@Q), + m@), = k
= Often adjusted by changing groups of quadrupoles

Mone turn = I cos(27Q) + J sin(27Q)

2 @ JSA
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Chromaticity

= Just like bending depended on momentum (dispersion),
focusing (and thus tunes) depend on momentum
» The variation of tunes with ¢ is called chromaticity

* |nsert a momentum perturbation is like adding a small extra
focusing to our one-turn matrix that depends on the
unperturbed focusing K,

Y, 5) — 1 0\ [cos(2mQ) + asin(27Q) Bsin(2wQ)
one turn(0) = Kgdds 1 —~sin(27Q) cos(2mQ) — asin(27Q)

M 5) — cos(2mQ) + asin(27Q) Bsin(27Q)
one turn(0) = —ysin(27Q) + Kod[cos(2mQ) + asin(27Q)]ds  cos(27Q) — asin(27Q) + KodBsin(27Q)ds

= This looks painful, but remember the trace is related to the
new tune

cos(2MQnew) = %Tr M = cos(27Q) + KTO(Sﬁ sin(27Q)ds

@
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Chromaticity Continued

cos(2MQnew) = %Tr M = cos(27Q) + KTO(SB sin(27Q)ds

cos(2mQnew) = cos(2m(Q 4+ dQ)) ~ cos(27Q) — 27 sin(27Q)dQ

* These last two terms must be equal, which gives

dQ) = — Kii)éﬁ(s)ds

Integrate around the ring to find the total tune change

AQ= - f K(s)8(s) ds

Natural Chromaticity is defined as

0= ()1 (3) o f o

The tune Q invariably has some spread from momentum spread

> @ JSA
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Homework

= Design a circular synchrotron made of 20 identical FODO cells,
with bending dipoles in place of the drifts for 500 MeV electrons
= What is the bend angle of each dipole?
* For 1.5 T maximum dipole field, how long is each dipole?
* How long is each FODO cell assuming the quads are thin quads?

= Assume a reasonable FODO phase advance per cell
» Treat the dipoles as drifts for the following analysis

= Calculate
* The minimum and maximum beta of each FODO cell
* The tunes Q, and Qy

« The natural chromaticities &, and &, (hint: the integral on p.20
becomes a sum for thin quadrupoles)

> JSA
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DisEersion Function zz!s! .
—A m/ ||

The generalized equation of motion of charge particles in magnets supplying bending
land focusing effects is given by:

§ 1 q 0B,
"+ Kk, = kr(s) == + ——=| and
"+ ky(s)z ) (s) 2 " pp Oz
y" + ky(s)y =0, ky (s) = — i.‘?.ﬂ,
po Oz
0 = Ap/po

Since the generalized solution of the homogeneous equation with 6 = 0 is given by
o - C
Fs) =M(s)%  M(s) = ( ot SS)

—  xz(s) = C(8) zo + S(8) x4

Then the generalized solution of the inhomogeneous equation with 6 # 0 can be written
as

z(s) = C(8) o + S(s) zo + D(s) do C’(T
= 2(s) = C"(s) 2o + §'(s) & + D'(s) 6o i) =8(a) | C‘S)/ T>

Here D(s) is a particular solution with §, =1 (see Problem S-8 in Conte's book).

§ 80
- 10—
— ‘!effegon Lap ™— Yujong Kim @ Idaho State University and Thomas Jefferson National Accelerator Facility, USA  n——
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Jorat
ator
Center

Dispersion Function 77(s) 7
C_Am

From the initial conditions (x,, x'y) at s = 0:
z(s) = C(8) zo + S(s) zo + D(s) do
z'(8) = C'(8) mo + S'(s) z + D'(s) &

B 0, + SO + KOS = %
C'(O)x.) -+ S'(O)xn' . D'(O)an - —\'(1'

» C(0) = §'(0) = 1

C'(0) = S(0) = 0

D(0)=D'(0) =0 v

Since no change in energy spread is assumed, trajectory equations can be written in
matrix form for 6 #0:

% C(s) S(s) D(s) Zo

| =|C'(s) S'(s) D'(s) A

) 0 0 1 do

Here, the trajectory x(s) has two parts: a part due to betatron oscillation, x,(s) and
the other part due to dispersion n(s) = dz/d§ Or |z,(s) =n(s)d| |z(s) =za(s) + z,(s)

81
17—
Yujong Kim @ Idaho State University and Thomas Jefferson National Accelerator Facility, USA = m—— SA
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Dispersion Function 7(s) i P
fg\eeemilffator—

If we insert the trajectory due to the periodic dispersion z,(s) =7(s)¢ in the matrix

form:
- C(s) S(s) D(s) Zo
o | =[Cs) S§s) D'(s) | |
0 0 0 1 do
For a periodic cell, x, = n(s))d ,=n(s,*L)6= ndé (no energy spread change here).

N 1\ (C6) S D) [
7= 6 D) ||
1

i 0 0 1

If we solve equation above, we can find a periodic dispersion function 7(s) and 7'(s).

_ [1=8'(s)]D(s) + S(s)D'(s) T s+L -

(s) = 2(1 — cos p) n(s) = 2 sinz(rg ) P?T()) o0 9(7) = ¢ls) ~mQal dr
(s) = [L=CEID(s) + C'()D(s) -

2(1 — cos ) (see Problem 53-8 in Conte's book & S. Y. Lee's book)

here we used tr(M)= C +S§" = 2cosu for M(s) = (g, g,)
82
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