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Transition Energy 

  Relativistic particle motion in a synchrotron creates some 
weird effects 
  For particles moving around with frequency     in circumference  

  At               we have the condition that particle revolution 
frequency does not depend on its momentum  

•  Reminiscent of a cyclotron but now we’re strong focusing and at 
constant radius! 

    At               higher momentum gives lower revolution frequency 
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Changing Pace: Longitudinal Motion and Energy 

  Up to now we have considered transverse motion in our 
accelerator, mostly in systems with periodic transverse 
focusing 

  But what about longitudinal motion? If we don’t provide 
some longitudinal focusing, particles different than design 
momentum will move away from the design particle over time 
  Momentum spread corresponds to a velocity spread 

  For typical numbers                , 
  Our bunch spreads and loses energy to synchrotron radiation 

Magnets RF Cavity 

design trajectory 

δ ≡ dp
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δ ≈ 10−3 γ ≈ 104 ⇒ dβ ≈ 10−11c = 3 mm/s
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RF Fields 

  We need to accomplish two things 
  Add longitudinal energy to the beam to keep p0 constant 
  Add longitudinal focusing 

  RF is also used in accelerating systems to not just 
balance losses from synchrotron radiation, but 
  Accelerate the beam as a whole: 
  Keep the beam bunched (focusing, phase stability): 

  Use sinusoidally varying RF voltage in short RF cavities 
  Run at harmonic number    of revolution frequency,   
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Phase Stability in a Linac 

  Consider a series of accelerating gaps (or a ring with one gap) 
  By design synchronous phase Φs gains just enough energy to 

balance radiation losses and hit same phase Φs in the next gap 
  P1 are our design particles: they “ride the wave” exactly in phase 

  If increased energy means increased frequency (“below transition”, e.g. linac) 

  M1,N1 will move towards P1 (local stability) => phase stability 
  M2,N2 will move away from P2 (local instability) 

M1: More energy, arrive earlier relative to P1 

N1: Less energy, arrive later        relative to P1 
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Phase Stability in an Electron Synchrotron 

  If increased energy means decreased frequency (“above transition”) 

  P2 are our design particles: they “ride the wave” exactly in phase 
  M1,N1 will move away from P1 (local instability) 
  M2,N2 will move towards P2 (local stability) => phase stability 
  All synchrotron light sources run in this regime (            ) 
  Note      is given by maximum RF voltage and required energy 

gain per turn 

M2: More energy, arrive later relative to P2 

N2: Less energy, arrive earlier     relative to P2 

γr � 1

φs
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Synchrotron Oscillations 

  The electric force is sinusoidal so we expect particle 
motion to look something like a pendulum 
  Define coordinate synchrotron phase of a particle 
  We can go through tedious relativistic mathematics to find a 

biased pendulum equation 

    where 
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Linearized Synchrotron Oscillations 

  If these synchrotron phase oscillations are small, this motion 
looks more like (surprise!) a simple harmonic oscillator 

Note that                          is required for phase stability. 
Example: ALS synchrotron frequency on order of few 10-3 

                                   are natural phase space coordinates 
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Large Synchrotron Oscillations 

  Sometimes particles achieve large momentum offset    
and therefore get a large phase offset    relative to design 
  For example, electron-electron scattering (Touschek)   
  Then our longitudinal motion equation becomes 

  Integrate with a constant 

  This is not closed-form integrable but you can write a 
computer program to iterate initial conditions to find   
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Synchrotron Oscillation Phase Space 

  Start particles at           and 

       is how phase moves 
Related to momentum offset  

  Area of locally stable 
motion is called RF bucket 
Move like stable biased 

pendula 
  Synchronous particle and 

nearby particles are stable 
But some particles “spin” 

through phases like 
unstable biased pendula 

              grow, particle is lost 
          at momentum aperture 

Conte and MacKay, p 148 
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Touschek Scattering 

  Electrons within the electron bunches in a synchrotron light 
storage ring do sometimes interact with each other 
  They’re all charged particles, after all 

  Fortunately most of these interactions are negligible for 
high energy, ultrarelativistic electron beams 
             so, e.g., time dilation reduces effect of space charge 
  But these are long-distance Coulomb repulsions 
  High angle scattering can lead to sudden large momentum 

changes for individual electrons 
  Low emittance and high brilliance enhances this effect 

•  Tighter distributions of particles => more likelihood of interactions 
  Large momentum changes can move electrons out of the 

stable RF bucket => particle loss 

γ � 1 ∝ γ−2
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Rough Order of Magnitude 

  You already figured out in homework that 
  If all transverse momentum is transferred into   then 

  For realistic numbers of 2 GeV beam (γ~4000),    =10m, 
and            beam displacement, we find 

  This scattering mechanism can create electron loss 
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Cross Section 

  Cross section is used in high energy physics to express 
the probability of scattering processes: units of area 

  Often expressed as a differential cross section, 
probably of interaction in a given set of conditions (like 
interaction angle or momentum transfer): 

  In particle colliders, luminosity is defined as the rate of 
observed interactions of a particular type divided by the 
cross section 

Integrating this over time gives an expected number of events in a 
given time period to calculate experiment statistics 

σ
1 barn ≡ 10−28 m2 = 10−24 cm2

dσ/dΩ

L ≡ event rate

σ
units [s−1 cm−2]
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Touschek Scattering Calculations 

  Touschek Scattering calculations use the Moller electron elastic 
interaction cross section in the rest frame of the electrons 
  Then relativistically boost back into the lab frame 
  This is all too involved for this lecture! 

•  Really 2nd year graduate level scattering theory calculation 
  See Carlo Bocchetta’s talk at CERN Accelerator School 

•  http://cas.web.cern.ch/cas/BRUNNEN/Presentations/PDF/Bocchetta/Touschek.pdf 

  As usual we’ll just quote the result 
  Touschek loss exponential decay lifetime 

Vbunch = 8πσxσyσz
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Touschek Scaling 

  High lifetime is good, low lifetime is bad 
  Higher particle phase space density                        makes loss 

faster 
•  But we want this for higher brilliance! 

  Smaller momentum acceptance makes loss faster 
•  But tighter focusing requires sextupoles to correct chromaticity 
•  Sextupoles and other nonlinearities reduce   

  Higher beam energy       makes loss slower 
•  Well at least we win somewhere! 
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Touschek Lifetime Calculations 

  Generally one must do some simulation of Touschek losses  

PAC’09 Conference: http://www.bnl.gov/isd/documents/70446.pdf  

Homework: Read and discuss this paper! Which parts do you recognize? Not recognize? 
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Survey Through Bocchetta’s paper 

  We now take a tour through some parts of Carlo 
Bocchetta’s talk at 
  http://cas.web.cern.ch/cas/BRUNNEN/Presentations/PDF/

Bocchetta/Touschek.pdf 


