
T. Satogata / Fall 2011                  ODU Intro to Accel Physics 1 

Introduction to Accelerator Physics 
Old Dominion University 

Linear Accelerator Lattice Optics 

Todd Satogata  Geoff Krafft (Jefferson Lab) 
still email satogata@jlab.org 

http://www.toddsatogata.net/2011-ODU 

Tuesday, October 3 2011 



T. Satogata / Fall 2011                  ODU Intro to Accel Physics 2 

Matrix Example: Strong Focusing 

  Consider a doublet of thin quadrupoles separated by drift L 

There is net focusing given by this alternating gradient system 
A fundamental point of optics, and of accelerator strong focusing 

Thin quadrupole 
matrices 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x where 
these are coordinates of transformation of incoming 
paraxial ray 

Equal strength doublet is net focusing under condition that 
each lens’s focal length is greater than distance between 
them 
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More Math: Hill’s Equation 

  Let’s go back to our quadrupole equations of motion for 

What happens when we let the focusing K vary with s? 
Also assume K is periodic in s with some periodicity C 

This periodicity can be one revolution around the accelerator or 
as small as one repeated “cell” of the layout 

  (Such as a FODO cell in the previous slide) 

The simple harmonic oscillator equation with a 
 periodically varying spring constant K(s) is 
 known as Hill’s Equation 
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Hill’s Equation Solution Ansatz 

  Solution is a quasi-periodic harmonic oscillator 

where w(s) is periodic in C but the phase φ is not!! 
Substitute this educated guess (“ansatz”) to find 

For          and         to be independent of     , coefficients of sin 
and cos terms must vanish identically   
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Courant-Snyder Parameters 

  Notice that in both equations               so we can scale 
this out and define a new set of functions, Courant-
Snyder Parameters or Twiss Parameters  
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Towards The Matrix Solution 

  What is the matrix for this Hill’s Equation solution? 

Take a derivative with respect to s to get  x� ≡ dx

ds

Now we can solve for A and B in terms of initial conditions  (x(0), x�(0))

x0 ≡ x(0) = A
�

β(0)

A =
x0�
β(0)

B =
1�
β(0)

[β(0)x�
0 + α(0)x0]

x�
0 ≡ x�(0) =

1�
β(0)

[B − α(0)A]

And take advantage of the periodicity of        to find β,α x(C), x�(C)
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Hill’s Equation Matrix Solution 

A =
x0�
β(0)

B =
1�
β(0)

[β(0)x�
0 + α(0)x0]

x(C) = [cosφ(C) + α(0) sinφ(C)]x0 + β(0) sinφ(C) x�
0

We can write this down in a matrix form where         is the betatron 
    phase advance through one period C  

∆φC

x�(C) = −γ(0) sinφ(C) x0 + [cosφ(C)− α(0) sinφ(C)] x�
0

�
x
x�

�

s+C

=

�
cos∆φC + α(0) sin∆φC β(0) sin∆φC

−γ(0) sin∆φC cos∆φC − α(0) sin∆φC

��
x
x�

�

s0
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Interesting Observations 

         is independent of s: this is the betatron phase 
advance of this periodic system 

  Determinant of matrix M is still 1! 
  Looks like a rotation and some scaling 
  M can be written down in a beautiful and deep way 

and remember 

�
x
x�

�

s+C

=

�
cos∆φC + α(0) sin∆φC β(0) sin∆φC

−γ(0) sin∆φC cos∆φC − α(0) sin∆φC

��
x
x�

�

s0

M = I cos∆φC + J sin∆φC I =

�
1 0
0 1

�
J =

�
α(0) β(0)
−γ(0) −α(0)

�
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Convenient Calculations 

  If we know the transport matrix, we can find the lattice 
parameters 

�
x
x�

�

s+C

=

�
cos∆φC + α(0) sin∆φC β(0) sin∆φC

−γ(0) sin∆φC cos∆φC − α(0) sin∆φC

��
x
x�

�

s0

betatron phase advance per cell∆φC =
1

2
TrM

β(0) =
m12

sin∆φC

α(0) =
m11 − cos∆φC

sin∆φC

γ(0) ≡ 1 + α2(0)

β(0)
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General Non-Periodic Transport Matrix 

  We can parameterize a general non-periodic transport 
matrix from s1 to s2 using the lattice parameters 

  This does not have a pretty form like the periodic matrix 
However both can be expressed as 

where the C and S terms are cosine-like and sine-like; the  
second row is the s-derivative of the first row! 

The most common use of this matrix is the m12 term: 
Effect of angle kick 

on downstream position 
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(Deriving the Non-Periodic Transport Matrix) 

Calculate A, B in terms of initial conditions             and 

Substitute (A,B) and put into matrix form: 
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Review 

�
x
x�

�

s+C

=

�
cos∆φC + α(0) sin∆φC β(0) sin∆φC

−γ(0) sin∆φC cos∆φC − α(0) sin∆φC

��
x
x�

�

s0

M = I cos∆φC + J sin∆φC I =

�
1 0
0 1

�
J =

�
α(0) β(0)
−γ(0) −α(0)

�
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Transport Matrix Stability Criteria 

  For long systems (rings) we want               stable as 

  If 2x2 M has eigenvectors             and eigenvalues             : 

  M is also unimodular (det M=1) so                   with complex 
  For        to remain bounded,    must be real 

  We can always transform M into diagonal form with the 
eigenvalues on the diagonal (since det M=1); this does not 
change the trace of the matrix 

  The stability requirement for these types of matrices is then 
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Periodic Example: FODO Cell Phase Advance 

  Select periodicity between centers of focusing quads 
  A natural periodicity if we want to calculate maximum β(s) 

          only has real solutions (stability) if  

cell 
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Periodic Example: FODO Cell Beta Max/Min 

  What is   ?  
  A natural periodicity if we want to calculate maximum β(s) 

  Follow a similar strategy reversing F/D quadrupoles to find 
the minimum β(s) within a FODO cell (center of D quad) 

cell 
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FODO Betatron Functions vs Phase Advance 

Generally want beta_max/L small 
  Strong focusing 
  Smaller magnets 
  Less expensive accelerator 
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FODO Beta Function, Betatron Motion 

  This is a picture of a FODO lattice, showing contours of 
since the particle motion goes like 
  This also shows a particle oscillating through the lattice 
  Note that            provides an “envelope” for particle oscillations 

•             is sometimes called the envelope function for the lattice 
  Min beta is at defocusing quads, max beta is at focusing quads 
  6.5 periodic FODO cells per betatron oscillation 

design trajectory 

Betatron motion 
trajectory 
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Example: RHIC FODO Lattice 

  1/6 of one of two RHIC synchrotron rings, injection lattice 
  FODO cell length is about L=30m 
  Phase advance per FODO cell is about  

Horizontal Vertical 

	



low-beta insertion 

FODO 

low-beta insertion 

matching 
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Propagating Lattice Parameters 

  If I have                   and I have the transport matrix       
that transports particles from            , how do I find the 
new lattice parameters                  ? 

The J(s) matrices at s1, s2 are related by 

Then expand, using det M=1 
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========== What’s the Ellipse? ========== 

  Area of an ellipse that envelops a given percentage of the 
beam particles in phase space is related to the emittance 
  We can express this in terms of our lattice functions! 
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Invariants and Ellipses 

  We assumed A was constant, an invariant of the motion 
A can be expressed in terms of initial coordinates to find 

This is known as the Courant-Snyder invariant: for all s, 

Similar to total energy of a simple harmonic oscillator 
      looks like an elliptical area in           phase space 
Our matrices look like scaled rotations (ellipses) in phase space 

(A4) 

s=s0 s=s0+C s=s0+2C s=s0+3C 
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Emittance 

  The area of the ellipse inscribed by any given particle in 
phase space as it travels through our accelerator is called 
the emittance    : it is constant         and given by 

Emittance is often quoted as the area of the ellipse that would 
contain a certain fraction of all (Gaussian) beam particles 

e.g. RMS emittance contains 39% of 2D beam particles 
Related to RMS beam size 

    Yes, this RMS beam size depends on s!  

RMS emittance convention is fairly standard 
    for electron rings, with units of mm-mrad 

(A4) 
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Adiabatic Damping and Normalized Emittance 

  But assumption       is violated when we accelerate! 
  When we accelerate, invariant emittance is not invariant! 
  We are defining areas in            phase space 
  The definition of x doesn’t change as we accelerate 
  But                                    does since      changes! 
       scales with relativistic beta, gamma: 
  This has the effect of compressing x’ phase space by 

  Normalized emittance is the invariant in this case 
unnormalized emittance goes down as we accelerate 
This is called adiabatic damping, important in, e.g., linacs 

(A4) 
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Phase Space Ellipse Geography 

  Now we can figure out some things from a phase space 
ellipse at a given s coordinate: 

x2 x1 

y1 
y2 
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Rings and Tunes 

  A synchrotron is by definition a periodic focusing system 
  It is very likely made up of many smaller periodic regions too 
  We can write down a periodic one-turn matrix as before 

  Recall that we defined tune as the total betatron phase 
advance in one revolution around a ring divided by 
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Tunes 

  There are horizontal and vertical tunes 
  turn by turn oscillation frequency 

  Tunes are a direct indication of the amount of focusing in 
an accelerator 
  Higher tune implies tighter focusing, lower 

  Tunes are a critical parameter for accelerator performance 
  Linear stability depends greatly on phase advance 
  Resonant instabilities can occur when 
  Often adjusted by changing groups of quadrupoles 
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Chromaticity 

  Just like bending depended on momentum (dispersion), 
focusing (and thus tunes) depend on momentum 
  The variation of tunes with     is called chromaticity 
  Insert a momentum perturbation is like adding a small extra 

focusing to our one-turn matrix that depends on the 
unperturbed focusing K0 

  This looks painful, but remember the trace is related to the 
new tune 
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Chromaticity Continued 

  These last two terms must be equal, which gives 

Integrate around the ring to find the total tune change 

Natural Chromaticity is defined as 

The tune Q invariably has some spread from momentum spread 
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Review 
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Dispersion 

  There is one more important lattice parameter to discuss 
  Dispersion        is defined as the change in particle position 

with fractional momentum offset 
Dispersion originates from momentum dependence of dipole bends 

  Add explicit momentum dependence to equation of motion again 

Use initial conditions etc to find 

The trajectory has two parts:  

Particular solution of inhomogeneous 
differential equation with periodic ρ(s) 
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Dispersion Continued 

  Substituting and noting dispersion is periodic, 

  If we take            we can solve this in a clever way 

  Solving gives 
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FODO Cell Dispersion 

  A periodic lattice without dipoles has no intrinsic dispersion 
  Consider FODO with long dipoles and thin quadrupoles 

  Each dipole has total length            so each cell is of length 
  Assume a large accelerator with many FODO cells so   

cell 
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FODO Cell Dispersion 

  Like    before, this choice of periodicity gives us 

  Changing periodicity to defocusing quad centers gives    
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RHIC FODO Cell 

Horizontal 

Vertical 

Horizontal dispersion 

dipole dipole 

quadrupole 

half 
quadrupole 
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Dispersion Suppressor 

  The FODO dispersion solution is non-zero everywhere 
  But in straight sections we often want 

•  e.g. to keep beam small in wigglers/undulators in light source 
  We can “match” between these two conditions with with a 

dispersion suppressor, a non-periodic set of magnets 
that transforms FODO             to zero. 

  Consider two FODO cells with different total bend angles 
•  Same quadrupole focusing to not disturb                much 
•  We want this to match                              to 
•               at ends to simplify periodic matrix   
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(FODO Dispersion Suppressor) 


