Introduction to Accelerator Physics
Old Dominion University

This Week: Dispersion, Dispersion
Suppression, Transition Energy, and
Longitudinal Motion

Todd Satogata (Jefferson Lab)
email satogata@)jlab.org
http://www.toddsatogata.net/2011-ODU

Tuesday, October 25-Thursday, October 27 2011

Select final presentation topic by Thu 3 Nov or one will be assigned to you!
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Review
Hill's equation z" + K(s)z =0
quasi — periodic ansatz solution x(s) = \/€8(s) cos[p(s) + ¢o]

B(s) =B(s+C) ~(s)= ! JFB?S()S)

a(5) = =35 o)~ 5

(m) _ (cos Adc + a(s) sin Ape B(s) sin Agc ) (az)
so+C S0

/ CC,

—(s) sin Agc cos Apc — a(s) sin Ageo
ot (s
betatron phase advance | A¢pc = / B(s) Tr M = 2 cos Agc
S0 S

M = Icos Apc + JsinApe I = ((1) (1)) J = (3(2) —50(42))

% | Courant — Snyder invariant |V} = A% = fyoxg + 2040330336 + BQCI:62 A
2 &
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Dispersion

* There is one more important lattice parameter to discuss
= Dispersion7(s) is defined as the change in particle position
with fractional momentum offset § = Ap/pg

d
x(s) = betatron + 1, (s)d  nx(s) = d—§
Dispersion originates from momentum dependence of dipole bends
Equivalent to separation of optical wavelengths in prism

Different positions
due to different bend
angles of different

White light with
many frequencies

(momenta) " an
enters, all with wave eng. S
same initial (frequencies,

momenta) of
incoming light

trajectories (x,x’)

%
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http://www.xkcd.org/964/

.}effergon Lab

(xked interlude)

This is known in accelerator
lattice design language as a
“double bend achromat”

' @&
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Dispersion

» Add explicit momentum dependence to equation of motion again
9
2+ K(s)x = —
(%) p(s)
Assume our ansatz solution and use initial conditions to find
z(s) = C(s)xg + S(s)xy + D(s)dg

2’ (s) = C'(s)xg + S'(s)xy + D'(s)dg

°S(7)
o P(7)

Particular solution of inhomogeneous
differential equation with periodic p(s)

z(s) C(s) S(s) D(s) o
'(s) | = C'(s) S'(s) D'(s) ()
d(s) 0 0 1 do

The trajectory has two parts:

dr

dx

x(s) = betatron + 10, (s)d  nx(s) = d

s
@
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Dispersion Continued

= Substituting and noting dispersion is periodic, 7:(s + C) = nz(s)

1 (5) C(s) S(s) D(s)\ [na(s) |
n(s) | = [ C'(s) S'(s) D'(s)| [ n(s) achromat : D = D' =0
0(s) 0 0 1 5o

» |f we take 6 = 1 we can solve this in a clever way

() = (60 5@) () + () =2 (%)
(D) =(00) = e
]

\ = Solving gives _ [1=5'(s)|D(s) + S(s)D'(s

S) =
%‘ n(s) 1 — cos Ag)
p_ JSA
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FODO Cell Dispersion

cell

pc/2 pc/2
—1/2f 1/f —1/2f
= A periodic lattice without dipoles has no intrinsic dispersion
» Consider FODO with long dipoles and thin quadrupoles
= Each dipole has total length pf-/2 so each cell is of length L = pf¢
= Assume a large accelerator with many FODO cells so 0¢ < 1

1 0 0 1 L Lo 1 0 0
M_gp=|-5 1 0 Mgipole = {0 1 % My=|3 10
0 0 1 0O O 1 0O 0 1
Mropo = M_of Maipole M f Maipote M —2f
L2 L L L
& L(1+d) F(1+ ) e
M — L L L2 L L2
%l o _W(l_ﬁ) L5 (1‘§——32f2)50
0 0 1

> JSA
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FODO Cell Dispersion

= Like 3 before, this choice of periodicity gives us 7,

(14 Llgip A2 ]
iy = Lic T 2812 5 2 n, = 0 at max
S ——
i 2

= Changing periodicity to defocus_ing quad centers gives 1,
LOs |1 — 5sin 29 |

i = 2 2
xXr — .
4 sin? %
12 I I | | | | [
eta_max/L ———
o 1 eta_min/L ——
x
©
£ 0.8 _
SI
© 06} _
-
I=
EI 04 - -
o —_
g 0. o (25 FODO cells) ]
| | | | | 1
60 80 100 120 140 160

@
Phase advance/cell [deg] 8
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Dispersion Suppressor

* The FODO dispersion solution is non-zero everywhere
= But in straight sections we often want 7, = 77; =0
* e.g. to keep beam small in wigglers/undulators in a light source

= We can “match” between these two conditions with with a
dispersion suppressor, a non-periodic set of magnets
that transforms FODO (7, 7.,) to zero.

—1j2f B2y 02 gy R2yp 0202 1)f

= Consider two FODO cells with different total bend angles 6, 6,
« Same quadrupole focusing to not disturb S, A¢, much
%{ « We want this to match (772, 75) = (712, 0) to (72, 7,,) = (0,0)

* a, = 0 at ends to simplify periodic matrix
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FODO Dispersion Suppressor

Zero dispersion 0 cos 200,  Brsin2A¢, D(s) Na FODO peak
area 0] = | —sin %f% COS 2A¢x /( ) 0 dispersion,
slope n'=0 1 0 0 1 slope =0

o400 G
- (-5 E2) (- )

. 4f2 L
Nz = —F (1+8f)(91+92)

1 1
0, =|1— 0 Oy = 0
! ( 4 sin® A;b”) ° (4811&2 %)

0 = 60, + 65 twocells, one FODO bend angle — reduced bending

multiply matrices =

D, JSA
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FODO Cell Dispersion and Suppressor
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Chapter 7: Synchrotron Oscillations

= Recall something called momentum compaction
= (Section 1.6 of the book, way back...)

= How does a particle’s path length relative to the design
particle change with its momentum relative to design particle?

dL d dL

Momentum compaction ap = (—) / (_p) _ Podu

L Po

= Example: circular motion in a constant magnetic field B

P Bgqg 27
- =2B = =\ — )5 )=1
a 7 o (27?) (Bq>

= Example: gravitational circular motion

GMm  p? dr 2p1? pdr
F pr— p— _— = — OCP p— —_—
r? mr  dp gMm?

22— 9
r dp

= |In general «,, really depends on the magnet layout
 In particular, the dispersion! (difference of path with momentum)

- JSA
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Transition Energy

» Relativistic particle motion in a periodic accelerator (like a
synchrotron) creates some weird effects

= For particles moving around with frequency w in circumference C

21 B, dw dp, dC < 1 ) dp
W = = S— — — -
¢ w  pr C " Vi) o
dC 1
momentum compaction ap = —- / 0 = lg 0 transition gamma v = \/T_P

= At “transition”, 7 = 7 and particle revolution frequency does
not depend on its momentum

« Reminiscent of a cyclotron but now we’re strong focusing and at
constant radius!

electron ring | At Y = Ytr higher momentum gives lower revolution frequency
electron linacl At Vr < Vtr higher momentum gives higher revolution frequency

> JSA
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Changing Pace: Longitudinal Motion and Energy

design trajectory
\\Q / \-/

Magnets RF Cavity

= Up to now we have considered transverse motion in our
accelerator, mostly in systems with periodic transverse
focusing

= But what about longitudinal motion? If we don’t provide
some longitudinal focusing, particles different than design
momentum will move away from the design particle over time

» Momentum spread corresponds to a velocity spread

d dB,
0= —p = 72 B
Po ﬁr,O

= For typical numbers § ~ 1072 7 &~ 10* = dB, ~ 10 "c =3 mm/s

= Qur bunch spreads and loses energy to synchrotron radiation

D JSA
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Synchronous Particle

= We’'ll be using periodic electric “RF fields”
= Commonly in the MHz to GHz frequency range
« Manageable wavelengths of EM waves: e.g. 100 MHz/c = 33 cm
= Design trajectory now includes longitudinal location and time
 Time is equivalent to phase of arrival in our oscillating RF field

 The design particle arrives at an RF phase defined as the
synchronous phase ¢ at synchronous electric field value Fs

Electric field E(t) }

eV

Time (or RF phase)

E, =0 — nodesign acceleration Esmax — design acceleration

E, <0 — design deceleration Fsmax — max design acceleration

) M
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RF Fields

= We need to accomplish two things
= Add longitudinal energy to the beam to keep p, constant
= Add longitudinal focusing
* RF is also used in accelerating systems to not just
balance losses from synchrotron radiation, but
= Accelerate the beam as a whole: E; # 0 IE
= Keep the beam bunched (focusing, phase stability): d—; # 0
» Use sinusoidally varying RF voltage in short RF cavities
= Run at harmonic number oIOrevqution frequency, wrt = hwrey

E(s, t) = SE(s,t) = sV sin(wyet + ¢s) Z d(s —nlL) energy gain/turn
] A AU = qV sin(wt At + @)
gé..O v ... At = Z— tsynchronous
W _ N RF Cavity Earlier in time is earlier in phase!

D JSA
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Phase Stability in a Linac

eV
M, M. M;: More energy, arrive earligr relative to P,
, Pl l)\ 3
Vil --@9---------~- - - - > - - - -
N N,
N;: Less energy, arrive later relative to P,
-
D, -, 1
@ t= »

] 7 ®

= Consider a series of accelerating gaps (or a ring with one gap)

= By design synchronous phase ®  gains just enough energy to
balance radiation losses and hit same phase @, in the next gap

= P, are our design particles: they “ride the wave” exactly in phase
» [f increased energy means increased frequency (“below transition”, e.g. linac)
= M,,N, will move towards P, (local stability) => phase stability
= M, N, will move away from P, (local instability)

- JSA
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Phase Stability in an Electron Synchrotron

eV

>
. >
e\\bFk--"f---——=== =0~ - -

» Ifincreased energy means decreased frequency (“above transition”)

= P, are our design particles: they “ride the wave” exactly in phase
= M,,N, will move away from P, (local instability)

= M, N, will move towards P, (local stability) => phase stability

= All synchrotron light sources run in this regime (v~ > 1)

= Note ¢; is given by maximum RF voltage and required energy
gain per turn

> (% &JSA
Jefferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 19 @



Synchrotron Oscillations

—

E(s,t) = 8E(s,t) = §V sin(wit + ¢5) » (s —nlL)

NI T AU = qV sin(wt At + @)
gg... V(t) ... At = tS_ treference
W P RF Cavity

» The electric force is sinusoidal so we expect particle
motion to look something like a pendulum

= Define coordinate synchrotron phase of a particle | = ¢ — ¢,

= We can go through tedious relativistic mathematics (book pages
144-146) to find a biased pendulum equation

hw?2 :ni.qV
5+ —ret sin(¢s + ©) — sin =0
where _ i B i wref © Tevolution frequency
wrf = hWref Ter = %% fYth of synchronous particle

> JSA
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Linearized Synchrotron Oscillations

hwl?efntr qV
27“-67% Uref

b+ [sin(¢s + ¢) —sin(¢s)] =0

= |f these synchrotron phase oscillations are small, this motion
looks more like (surprise!) a simple harmonic oscillator

sin(¢s + @) &~ @ cos(ds) + sin(es)

G+p=0
QS = Wref h77tr COS(¢S) qV synchrotron frequency
2162y, mc?

Wref 27757% Yr mc?

Qs = 2 — \/hﬂtr cos(¢s) qV synchrotron tune

Note that 7, cos(¢s) > 0 is required for phase stability.
Example: ALS synchrotron frequency on order of few 10-3
(p, ¢ = dp/dt) are natural phase space coordinates

D JSA
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Large Synchrotron Oscillations

= Sometimes particles achieve large momentum offset ¢
and therefore get a large phase offset ¥ relative to design

= For example, particle-particle scattering (1BS or Touschek)
= Then our longitudinal motion equation becomes

-
[sin(p + ¢5) — sin(s)] = 0 p=¢— ¢s

P COS qbs
d(¢®) _
dt

= Integrate with a constant ¢y = ¢(t = 0)

I 2(cos ¢ — cos gbg)
Q—qu — i\/ s +2(¢ — ¢o) tan ¢ +

¢—¢ = d(gb?) _ 2 (— sin ¢ do) + 202 tan ¢, deb

COS Qg

1
QQ¢

= This is not closed-form integrable but you can write a /
computer program to iterate initial conditions to find (p(t), ¥ (1))

> JSA
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Synchrotron Oscillation Phase Space

/
59,90 Conte and MacKay, p 148

= Start particles at ¢ # 0 and synchronous particle
¢ =0

= ¢’ is how phase moves
Related to momentum offset §
* Area of locally stable
motion is called RF bucket 1
Move like stable biased .. 7 7
pendula & 2> &2
= Synchronous particle and S b
nearby particles are stable '

But some particles “spin”
through phases like
unstable biased pendula

= ' § grow, particle is lost

- at momentum aperture
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Pendulum Motion and Nonlinear Dynamics

= Time variations of the RF fields (particularly voltage or
phase modulation) can cause very complicated dynamics

= Driven pendula are classic examples in nonlinear dynamics
= See http://www.physics.orst.edu/~rubin/nacphy/JAVA pend

= Some class demos:

damping constant = 0.0
1 &
driving force = 0.0
-
driving frequency = 0.666

phase of driving force = 0.0

duration delay
100 (5][15 (3]

initial position = 3.13

a1

initial velocity = 0.0

no damping, no drive

pendulum separatrix

.Jeffers?on Lab

damping constant = 0.0

"=

driving force = 0.0

e

driving frequency = 0.666

phase of driving force = 0.0

duration delay
[100 (5]]15 =

initial position = 3.13

aX

initial velocity

no damping, no drive

precessing pendulum

T. Satogata / Fall 2011

|damping constant = 0.05 |
driving force = 0.0

1 &

driving frequency = 0.666

phase of driving force = 0.0

duration delay
F100—+24 p15—134

initial position = 3.13
)
initial velocity = 0.0

damping, no drive

damped pendulum

ODU Intro to Accel Physics

| damping constant = 0.05 |

| \i| driving force = 0.204 | |

driving frequency = 0.666

phase of driving force = 0.0

duration delay
(100 7][15 (%]

initial position = 3.13
)
initial velocity = 0.0

damping, driven

chaotic pendulum

. @



