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Introduction to Accelerator Physics 
Old Dominion University 

This Week: Dispersion, Dispersion 
Suppression, Transition Energy, and 

Longitudinal Motion 

Todd Satogata (Jefferson Lab) 
email satogata@jlab.org 

http://www.toddsatogata.net/2011-ODU 

Tuesday, October 25-Thursday, October 27 2011 
Select final presentation topic by Thu 3 Nov or one will be assigned to you! 
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Review 
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Dispersion 

  There is one more important lattice parameter to discuss 
  Dispersion        is defined as the change in particle position 

with fractional momentum offset 

Dispersion originates from momentum dependence of dipole bends 
Equivalent to separation of optical wavelengths in prism 

White light with 
many frequencies 

(momenta) 
enters, all with 

same initial 
trajectories (x,x’) 

Different positions 
due to different bend 

angles of different 
wavelengths 
(frequencies, 
momenta) of 
incoming light 
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(xkcd interlude) 

http://www.xkcd.org/964/ 

This is known in accelerator 
lattice design language as a 

“double bend achromat” 
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Dispersion 

  Add explicit momentum dependence to equation of motion again 

Assume our ansatz solution and use initial conditions to find 

The trajectory has two parts:  

Particular solution of inhomogeneous 
differential equation with periodic ρ(s) 
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Dispersion Continued 

  Substituting and noting dispersion is periodic, 

  If we take            we can solve this in a clever way 

  Solving gives 



T. Satogata / Fall 2011                 ODU Intro to Accel Physics 7 

FODO Cell Dispersion 

  A periodic lattice without dipoles has no intrinsic dispersion 
  Consider FODO with long dipoles and thin quadrupoles 

  Each dipole has total length            so each cell is of length 
  Assume a large accelerator with many FODO cells so   

cell 
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FODO Cell Dispersion 

  Like    before, this choice of periodicity gives us 

  Changing periodicity to defocusing quad centers gives    
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RHIC FODO Cell 

Horizontal 

Vertical 

Horizontal dispersion 

dipole dipole 

quadrupole 

half 
quadrupole 

half 
quadrupole 
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Dispersion Suppressor 

  The FODO dispersion solution is non-zero everywhere 
  But in straight sections we often want 

•  e.g. to keep beam small in wigglers/undulators in a light source 
  We can “match” between these two conditions with with a 

dispersion suppressor, a non-periodic set of magnets 
that transforms FODO             to zero. 

  Consider two FODO cells with different total bend angles 
•  Same quadrupole focusing to not disturb                much 
•  We want this to match                              to 
•               at ends to simplify periodic matrix   
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FODO Dispersion Suppressor 
FODO peak 
dispersion, 

slope η’=0 

Zero dispersion 
area 

slope η’=0 
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FODO Cell Dispersion and Suppressor 
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Chapter 7: Synchrotron Oscillations 

  Recall something called momentum compaction 
  (Section 1.6 of the book, way back…) 
  How does a particle’s path length relative to the design 

particle change with its momentum relative to design particle? 

  Example: circular motion in a constant magnetic field B 

  Example: gravitational circular motion 

  In general      really depends on the magnet layout 
•  In particular, the dispersion! (difference of path with momentum)  
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Transition Energy 

  Relativistic particle motion in a periodic accelerator (like a 
synchrotron) creates some weird effects 
  For particles moving around with frequency     in circumference  

  At “transition”,               and particle revolution frequency does 
not depend on its momentum  

•  Reminiscent of a cyclotron but now we’re strong focusing and at 
constant radius! 

    At               higher momentum gives lower revolution frequency 
    At               higher momentum gives higher revolution frequency  

electron ring 

electron linac 
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Changing Pace: Longitudinal Motion and Energy 

  Up to now we have considered transverse motion in our 
accelerator, mostly in systems with periodic transverse 
focusing 

  But what about longitudinal motion? If we don’t provide 
some longitudinal focusing, particles different than design 
momentum will move away from the design particle over time 
  Momentum spread corresponds to a velocity spread 

  For typical numbers                , 
  Our bunch spreads and loses energy to synchrotron radiation 

Magnets RF Cavity 

design trajectory 
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Synchronous Particle 

  We’ll be using periodic electric “RF fields” 
  Commonly in the MHz to GHz frequency range 

•  Manageable wavelengths of EM waves: e.g. 100 MHz/c = 33 cm 
  Design trajectory now includes longitudinal location and time 

•  Time is equivalent to phase of arrival in our oscillating RF field 
•  The design particle arrives at an RF phase defined as the 

synchronous phase      at synchronous electric field value  
Electric field E(t) 

Time (or RF phase) 
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RF Fields 

  We need to accomplish two things 
  Add longitudinal energy to the beam to keep p0 constant 
  Add longitudinal focusing 

  RF is also used in accelerating systems to not just 
balance losses from synchrotron radiation, but 
  Accelerate the beam as a whole: 
  Keep the beam bunched (focusing, phase stability): 

  Use sinusoidally varying RF voltage in short RF cavities 
  Run at harmonic number    of revolution frequency,   

RF Cavity 

energy gain/turn 

Earlier in time is earlier in phase! 
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Phase Stability in a Linac 

  Consider a series of accelerating gaps (or a ring with one gap) 
  By design synchronous phase Φs gains just enough energy to 

balance radiation losses and hit same phase Φs in the next gap 
  P1 are our design particles: they “ride the wave” exactly in phase 

  If increased energy means increased frequency (“below transition”, e.g. linac) 

  M1,N1 will move towards P1 (local stability) => phase stability 
  M2,N2 will move away from P2 (local instability) 

M1: More energy, arrive earlier relative to P1 

N1: Less energy, arrive later        relative to P1 
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Phase Stability in an Electron Synchrotron 

  If increased energy means decreased frequency (“above transition”) 

  P2 are our design particles: they “ride the wave” exactly in phase 
  M1,N1 will move away from P1 (local instability) 
  M2,N2 will move towards P2 (local stability) => phase stability 
  All synchrotron light sources run in this regime (            ) 
  Note      is given by maximum RF voltage and required energy 

gain per turn 

M2: More energy, arrive later relative to P2 

N2: Less energy, arrive earlier     relative to P2 



T. Satogata / Fall 2011                 ODU Intro to Accel Physics 20 

Synchrotron Oscillations 

  The electric force is sinusoidal so we expect particle 
motion to look something like a pendulum 
  Define coordinate synchrotron phase of a particle 
  We can go through tedious relativistic mathematics (book pages 

144-146) to find a biased pendulum equation 

    where 

RF Cavity 

ωrf = hωref
ωref : revolution frequency

of synchronous particle
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Linearized Synchrotron Oscillations 

  If these synchrotron phase oscillations are small, this motion 
looks more like (surprise!) a simple harmonic oscillator 

Note that                          is required for phase stability. 
Example: ALS synchrotron frequency on order of few 10-3 

                                   are natural phase space coordinates 

synchrotron frequency 

synchrotron tune Qs ≡
Ωs

ωref
=

�
hηtr cos(φs)

2πβ2
rγr

qV

mc2
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Large Synchrotron Oscillations 

  Sometimes particles achieve large momentum offset    
and therefore get a large phase offset    relative to design 
  For example, particle-particle scattering (IBS or Touschek)   

  Then our longitudinal motion equation becomes 

  Integrate with a constant 

  This is not closed-form integrable but you can write a 
computer program to iterate initial conditions to find   
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Synchrotron Oscillation Phase Space 

  Start particles at           and 

       is how phase moves 
Related to momentum offset  

  Area of locally stable 
motion is called RF bucket 
Move like stable biased 

pendula 
  Synchronous particle and 

nearby particles are stable 
But some particles “spin” 

through phases like 
unstable biased pendula 

              grow, particle is lost 
          at momentum aperture 

Conte and MacKay, p 148 

synchronous particle 

synchronous particle 

synchronous particle 

RF bucket 

RF bucket 

RF 
bucket 
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Pendulum Motion and Nonlinear Dynamics 

  Time variations of the RF fields (particularly voltage or 
phase modulation) can cause very complicated dynamics 
  Driven pendula are classic examples in nonlinear dynamics 
  See http://www.physics.orst.edu/~rubin/nacphy/JAVA_pend 
  Some class demos: 

no damping, no drive 

pendulum separatrix 

no damping, no drive 

precessing pendulum 

damping, no drive 

damped pendulum 

damping, driven 

chaotic pendulum 


