Introduction to Accelerator Physics Old Dominion University

Nonlinear Dynamics Examples in Accelerator Physics

Todd Satogata (Jefferson Lab) email satogata@jlab.org http://www.toddsatogata.net/2011-ODU

Tuesday Nov 22-Tuesday Nov 29 2011

1

T. Satogata / Fall 2011

Jefferson Lab

Class Schedule

 Here is a modified version of the syllabus for the remaining weeks including where we are

Thursday 17 Nov	Synchrotron Radiation II, Cooling	
Tuesday 22 Nov	Nonlinear Dynamics I	
Thursday 24 Nov	No class (Thanksgiving!)	
Tuesday 29 Nov	Nonlinear Dynamics II	
Thursday 1 Dec	Survey of Accelerator Instrumentation	
Tuesday 6 Dec	Oral Presentation Finals (10 min ea)	
Thursday 8 Dec	No class (time to study for exams!)	
Exam week	Do well on your other exams!	

• Fill in your class feedback survey!

Jefferson Lab

Transverse Motion Review

Hill's equation x'' + K(s)x = 0quasi – periodic ansatz solution $x(s) = A\sqrt{\beta(s)}\cos[\phi(s) + \phi_0]$ amplitude function $\beta(s) = \beta(s+C)$ $\gamma(s) \equiv \frac{1+\alpha(s)^2}{\beta(s)}$ derivative $\alpha(s) \equiv -\frac{1}{2}\beta'(s)$ $\phi(s) = \int \frac{ds}{\beta(s)}$ phase advance Matrix formulation of one – period motion $\begin{pmatrix} x \\ x' \end{pmatrix}_{s+C} = \begin{pmatrix} \cos \Delta \phi_C + \alpha(0) \sin \Delta \phi_C & \beta(0) \sin \Delta \phi_C \\ -\gamma(0) \sin \Delta \phi_C & \cos \Delta \phi_C - \alpha(0) \sin \Delta \phi_C \end{pmatrix} \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0}$ $Q \equiv \frac{\Delta \phi_C}{2\pi} = \frac{1}{2\pi} \int_{c_0}^{s_0 + C} \frac{ds}{\beta(s)} \quad \text{Tr } M = 2\cos(2\pi Q)$ betatron tune Q $M = I \cos \Delta \phi_C + J \sin \Delta \phi_C \quad I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad J = \begin{pmatrix} \alpha(0) & \beta(0) \\ -\gamma(0) & -\alpha(0) \end{pmatrix}$ $J^2 = -I \quad \Rightarrow \quad M = e^{2\pi Q J(s)}$ Jefferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 3

Maps	S	
$ \begin{pmatrix} x \\ x' \end{pmatrix}_{s_0+C} = \begin{pmatrix} \cos(2\pi Q) + \alpha(0)\sin(2\pi Q) \\ -\gamma(0)\sin(2\pi Q) \end{pmatrix} $	$\beta(0)\sin(2\pi Q)$ $\cos(2\pi Q) - \alpha(0)\sin(2\pi Q)$	$\left. \begin{array}{c} \left(\begin{array}{c} x \\ x' \end{array} \right)_{s_0} \right.$

- This "one-turn" matrix M can also be viewed as a map
 - Phase space (x,x') of this 2nd order ordinary diff eq is $\Re \times \Re = \Re^2$
 - M is an isomorphism of this phase space: $M: \Re^2 \to \Re^2$

<section-header>

 ${\rm Henri}\,{\rm Poincare}'$

Jefferson Lab

- Poincare' surfaces are used to visualize complicated "orbits" in phase space
 - Intersections of motion in phase space with a subspace
 - Also called "stroboscopic" surfaces
 - Like taking a periodic measurement of (x,x') and plotting them
 - Here our natural period is one accelerator revolution or turn
 - Transforms a continuous system into a discrete one!
 - Originally used by Poincare' to study celestial dynamic stability

@ 🤃

Linear and Nonlinear Maps

- M here is a discrete linear transformation
 - Derived from the forces of explicitly linear magnetic fields
 - Derived under conditions where energy is conserved
 - M is also expressible as a product of scalings and a rotation

$$M = V^{-1}RV = \begin{pmatrix} \frac{1}{\sqrt{\beta}} & 0\\ \frac{\alpha}{\sqrt{\beta}} & \sqrt{\beta} \end{pmatrix} \begin{pmatrix} \cos(2\pi Q) & \sin(2\pi Q)\\ -\sin(2\pi Q) & \cos(2\pi Q) \end{pmatrix} \begin{pmatrix} \sqrt{\beta} & 0\\ -\frac{\alpha}{\sqrt{\beta}} & \frac{1}{\sqrt{\beta}} \end{pmatrix}$$

- Here V is the scaling that transforms the phase space ellipse into a circle (normalized coordinates)
- Well-built accelerators are some of the most linear manmade systems in the world
 - Particles circulate up to tens of billions of turns (astronomical!)
 - Negligibly small energy dissipation, nonlinear magnetic fields
 - Perturbations of o(10⁻⁶) or even smaller

efferson Lab

Nonlinear Magnets

- But we can also have nonlinear magnets (e.g. sextupoles)
 - These are still conservative but add extra nonlinear kicks sextupole kick $\Delta x' = \frac{1}{2} \frac{B''L}{(B\rho)} (x^2 + y^2) \equiv b_2 (x^2 + y^2)$
 - These nonlinear terms are not easily expressible as matrices
 - Strong sextupoles are necessary to correct chromaticity
 - Variation of focusing (tune) over distribution of particle momenta
 - These and other forces make our linear accelerator quite nonlinear

Ν

S

Nonlinear Maps

- Consider a simplified nonlinear accelerator map
 - A linear synchrotron with a single "thin" sextupole

$$M = \begin{pmatrix} \cos(2\pi Q) + \alpha(0)\sin(2\pi Q) & \beta(0)\sin(2\pi Q) \\ -\gamma(0)\sin(2\pi Q) & \cos(2\pi Q) - \alpha(0)\sin(2\pi Q) \end{pmatrix}$$

Henon map

- One iteration of this nonlinear map is one turn around the accelerator
 - Thin element: only x' changes, not x
- Interactive Java applet at http://www.toddsatogata.net/2011-USPAS/Java/

The "Boring" Case

- When $b_2 = 0$ we just have our usual linear motion
 - However, rational tunes where Q=m/n exhibit intriguing behavior
 - The motion repeats after a small number of turns
 - This is known as a resonance condition
 - Perturbations of the beam at this resonant frequency can change the character of particle motion quite a lot
 - \Rightarrow Nonlinearities!

efferson Lab

T. Satogata / Fall 2011

Not so Boring: Example from the Java Applet

- http://www.toddsatogata.net/2011-USPAS/Java/
- The phase space looks very different for Q=0.334 even when turning on one small sextupole...
- And monsters can appear when b2 gets quite large...

10

T. Satogata / Fall 2011

Jefferson Lab

ODU Intro to Accel Physics

What is Happening Here?

- Even the simplest of nonlinear maps exhibits complex behavior
 - Frequency (tune) is no longer independent of amplitude
 - Recall tune also depends on particle momentum (chromaticity)
 - Nonlinear kicks sometimes push "with" the direction of motion and sometimes "against" it
 - (Todd sketches something hastily on the board here $\ensuremath{\textcircled{\odot}}$)

11

efferson Lab

Resonance Conditions Revisited

 In general, we have to worry about all tune conditions where

$$mQ_x \pm nQ_y = l$$

in an accelerator, where m, n, I are integers. Any of these resonances results in repetitive particle motion

In general we really only have to worry when m,n are "small", up to about 8-10

12

Jefferson Lab

Discrete Hamiltonians

- Let's recast our original linear map in terms of a discrete Hamiltonian
 - Normalized circular motion begs for use of polar coordinates
 - In dynamical terms these are "action-angle" coordinates (J,ϕ)
 - action J: corresponds to particle dynamical energy

$$J = (x_n^2 + x_n'^2)/2 \qquad \qquad x_n = \sqrt{2J} \cos \phi x_n' = \sqrt{2J} \sin \phi$$

Linear Hamiltonian:

$$H = 2\pi QJ$$

Hamilton's equations:

Jefferson Lab

$$\Delta \phi = \frac{\partial H}{\partial J} = 2\pi Q \quad \text{(Sensible!)}$$
$$\Delta J = -\frac{\partial H}{\partial \phi} = 0$$

- J (radius, action) does not change
 - Action is an invariant of the linear equations of motion

Discrete Hamiltonians II

- Hamiltonians terms correspond to potential/kinetic energy
 - Adding (small) nonlinear potentials for nonlinear magnets
 - Assume one dimension for now (y=0)
 - We can then write down the sextupole potential as

$$V_{\text{sext}} = \frac{b_2}{3} x_n^3 = \frac{b_2}{3} (2J)^{3/2} \cos^3 \phi$$

(riff on trig calculations)

$$\cos^3 \phi = \frac{1}{4}(\cos 3\phi + 3\cos \phi)$$

14

$$V_{\text{sext}} = \frac{b_2 \sqrt{2}}{6} J^{3/2} (3\cos\phi + \cos 3\phi)$$

And the new perturbed Hamiltonian becomes

$$H(J,\phi) = 2\pi Q J + \frac{b_2 \sqrt{2}}{6} J^{3/2} (3\cos\phi + \cos 3\phi)$$

- The sextupole drives the 3Q=k resonance
- Next time we'll use this to calculate where those triangular sides are, including **fixed points** and **resonance islands**

Jefferson Lab

Review

One-turn one-dimensional linear accelerator motion

$$\begin{pmatrix} x \\ x' \end{pmatrix}_{s+C} = M(s) \begin{pmatrix} x \\ x' \end{pmatrix}_s \quad M(s) = I\cos(2\pi Q) + J(s)\sin(2\pi Q) = e^{2\pi Q J(s)}$$

$$J(s) = \begin{pmatrix} \alpha(s) & \beta(s) \\ -\gamma(s) & -\alpha(s) \end{pmatrix} \qquad J^2(s) = -I \quad \text{(independent of s)}$$

Normalized coordinates (motion becomes circular rotations)

Action-Angle (Polar) Coordinates

One more coordinate transformation: action-angle coordinates

$$x_N = \sqrt{2J}\cos\phi$$

$$x'_N = -\sqrt{2J}\sin\phi$$

$$J = \frac{x_N^2 + x_N'^2}{2}$$

These are simply polar coordinates

Jefferson Lab

- But J acts as an "action" or total energy of the system
- Note that rotations do not change J: this action is an invariant
- Many dynamical systems reduce to action-angle coordinates
 - Simple harmonic oscillators, coupled pendula, crystal lattices...
 - Any dynamical system with a natural scale of periodicity

Discrete Hamiltonian

- Hamiltonian: dynamics from total energy of system
 - Relates differential equations for a coordinate (position) x and a related ("canonical") momentum p_x

$$\dot{x} = \frac{\partial H}{\partial p_x} \qquad \dot{p_x} = -\frac{\partial H}{\partial x}$$

• Example: Simple (spring) harmonic oscillator

$$H = P.E. + K.E. = \frac{1}{2}kx^2 + \frac{p_x^2}{2m}$$
$$\dot{x} = \frac{\partial H}{\partial p_x} = \frac{p_x}{m} \qquad \dot{p_x} = -\frac{\partial H}{\partial x} = -kx$$

$$m\ddot{x} = \dot{p_x} = -kx \quad \Rightarrow \quad m\ddot{x} + kx = 0$$

 The Hamiltonian energy of the system gives the dynamics (equation of motion)

Jefferson Lab

Discrete Hamiltonian II

- In our linear accelerator system, the Hamiltonian is simple
 - But it's also important to notice that it's discrete!
 - ϕ is a position and J is the corresponding canonical momentum

$$H(\phi, J) = 2\pi Q J$$
$$\Delta \phi = \frac{\partial H}{\partial J} = 2\pi Q \qquad \Delta J = -\frac{\partial H}{\partial \phi} = 0 \text{ (conserved)}$$

- Hamiltonians are very useful when systems are "nearly" linear
 - We add small nonlinear perturbations to the above regular motion
 - This approach often gives the good insights into the dynamics

efferson Lab

The Henon Map and Sextupoles

- Sextupoles are the most common magnet nonlinearities in accelerators
 - Necessary for correcting chromaticity (dependence of focusing strength of quadrupoles with particle momentum)
- Our linear system with one sextupole kick is also a classic dynamics problem: the Henon Map
 - <u>http://www.toddsatogata.net/2011-USPAS/Java/henon.html</u>

Sextupole Hamiltonian

- Let's calculate the locations of the nontrivial fixed points
 - Here note that the linear tune Q must be close to 1/3 since the tune of particles at the fixed points is exactly 1/3
- The sextupole potential is like the magnetic potential
 - Recall that the sextupole field is quadratic
 - The field is the derivative of the potential, so the potential is cubic

• We also assume that b_2 and ϵ are small (perturbation theory)

T. Satogata / Fall 2011

Jefferson Lab

ODU Intro to Accel Physics

More Sextupole Hamiltonian

$$\begin{split} H(J,\phi) &= 2\pi Q J + \frac{b_2 \sqrt{2}}{6} J^{3/2} (3\cos\phi + \cos 3\phi) \\ \Delta\phi &= \frac{\partial H}{\partial J} = 2\pi Q + \frac{b_2 \sqrt{2}}{4} J^{1/2} (3\cos\phi + \cos 3\phi) \\ \Delta J &= -\frac{\partial H}{\partial \phi} = \frac{b_2 \sqrt{2}}{2} J^{3/2} (\sin\phi + \sin 3\phi) \end{split}$$

- We want to find points where $\Delta \phi = 2\pi$ and $\Delta J = 0$ after three iterations of this map (three turns)
- Every turn, $\Delta\phi\approx 2\pi Q=2\pi/3+2\pi\epsilon$
- Every turn, $\Delta J \approx 0$

lefferson Lab

- The $\sin \phi$ and $\cos \phi$ "average out" over all three turns
- But the $sin(3\phi)$ and $cos(3\phi)$ do not since their arguments advance by $3\Delta\phi \approx 2\pi + 6\pi\epsilon \approx 2\pi$ every turn

Three-Turn Map

 We can now approximate the three-turn map as three applications of the (approximately constant) one-turn map

times 3 for
3-turn map!
$$\Delta \phi = \frac{\partial H}{\partial J} = 2\pi Q + \frac{b_2 \sqrt{2}}{4} J^{1/2} (3 \cos \phi + \cos 3\phi)$$
$$\Delta J = -\frac{\partial H}{\partial \phi} = \frac{b_2 \sqrt{2}}{2} J^{3/2} (\sin \phi + \sin 3\phi)$$
$$\Delta \phi (3 \text{ turns}) = 2\pi + 6\pi\epsilon + \frac{3b_2 \sqrt{2}}{4} J^{1/2} \cos 3\phi$$
$$\Delta J (3 \text{ turns}) = \frac{3b_2 \sqrt{2}}{2} J^{3/2} \sin 3\phi$$

22

T. Satogata / Fall 2011

Jefferson Lab

ODU Intro to Accel Physics

Fixed Points

$$\Delta\phi(3\,\text{turns}) = 2\pi + 6\pi\epsilon + \frac{3b_2\sqrt{2}}{4}J^{1/2}\cos 3\phi$$
$$\Delta J(3\,\text{turns}) = \frac{3b_2\sqrt{2}}{2}J^{3/2}\sin 3\phi$$

- The fixed points are located where $\Delta \phi(3 \text{ turns}) = 2\pi$ and $\Delta J(3 \text{ turns}) = 0$
- The fixed point phases are found where $\Delta J(3 \text{ turns}) = 0$

$$\sin 3\phi_{\rm FP} = 0 \quad \phi_{\rm FP} = 0, \frac{\pi}{3}, \frac{2\pi}{3}, \pi, \frac{4\pi}{3}, \frac{5\pi}{3} \text{ (six!)}$$

• The fixed point actions are found where $\Delta \phi(3 \text{ turns}) = 2\pi$

$$6\pi\epsilon + \frac{3b_2\sqrt{2}}{4}J_{\rm FP}^{1/2} = 0 \qquad J_{\rm FP} = \left(\frac{-8\pi\epsilon}{b_2\sqrt{2}}\right)^2$$

T. Satogata / Fall 2011

Jefferson Lab

Wow, it seems to work!

Q=0.332
b2=0.04
$$\epsilon = -0.0013$$

Jefferson Lab

Q=0.334 b2=0.04

 $\epsilon = 0.00667$

$$J_{\rm FP} = \left(\frac{-8\pi\epsilon}{b_2\sqrt{2}}\right)^2$$

 $J_{\rm FP}$ scales with ϵ^2 $x_{N,\mathrm{FP}}$ scales with ϵ

JSA

24

ODU Intro to Accel Physics