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Introduction to Accelerator Physics 
Old Dominion University 

Nonlinear Dynamics 
Examples in Accelerator Physics 

Todd Satogata (Jefferson Lab) 
email satogata@jlab.org 

http://www.toddsatogata.net/2011-ODU 

Tuesday Nov 22-Tuesday Nov 29 2011 
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Class Schedule 

  We have only a few more weeks of class left 
  Here is a modified version of the syllabus for the 

remaining weeks including where we are  

  Fill in your class feedback survey!  

Thursday 17 Nov Synchrotron Radiation II, Cooling 
Tuesday 22 Nov Nonlinear Dynamics I 
Thursday 24 Nov No class (Thanksgiving!) 
Tuesday 29 Nov Nonlinear Dynamics II 
Thursday 1 Dec Survey of Accelerator Instrumentation 
Tuesday 6 Dec Oral Presentation Finals (10 min ea) 
Thursday 8 Dec No class (time to study for exams!) 
Exam week Do well on your other exams! 
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Transverse Motion Review 
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Maps 

  This “one-turn” matrix M can also be viewed as a map 
  Phase space (x,x’) of this 2nd order ordinary diff eq is 
  M is an isomorphism of this phase space: 
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Poincare’ Surfaces of Section 

  Poincare’ surfaces are used to visualize complicated “orbits” in 
phase space 
  Intersections of motion in phase space with a subspace 
  Also called “stroboscopic” surfaces 

•  Like taking a periodic measurement of (x,x’) and plotting them 
•  Here our natural period is one accelerator revolution or turn 

  Transforms a continuous system into a discrete one! 
  Originally used by Poincare’ to study celestial dynamic stability 



T. Satogata / Fall 2011                 ODU Intro to Accel Physics 6 

Linear and Nonlinear Maps 

  M here is a discrete linear transformation 
  Derived from the forces of explicitly linear magnetic fields 
  Derived under conditions where energy is conserved 
  M is also expressible as a product of scalings and a rotation 

  Here V is the scaling that transforms the phase space ellipse 
into a circle (normalized coordinates) 

  Well-built accelerators are some of the most linear man-
made systems in the world 
  Particles circulate up to tens of billions of turns (astronomical!) 
  Negligibly small energy dissipation, nonlinear magnetic fields 

•  Perturbations of o(10-6) or even smaller 
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Nonlinear Magnets 

  But we can also have nonlinear magnets (e.g. sextupoles) 
  These are still conservative but add extra nonlinear kicks 

  These nonlinear terms are not easily expressible as matrices 
  Strong sextupoles are necessary to correct chromaticity 

•  Variation of focusing (tune) over distribution of particle momenta 
•  These and other forces make our linear accelerator quite nonlinear 
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Nonlinear Maps 

  Consider a simplified nonlinear accelerator map 
  A linear synchrotron with a single “thin” sextupole 

  One iteration of this nonlinear map is 
one turn around the accelerator 
  Thin element: only x’ changes, not x 

  Interactive Java applet at 
     http://www.toddsatogata.net/2011-USPAS/Java/ 
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The “Boring” Case 

  When           we just have our usual linear motion 
  However, rational tunes where Q=m/n exhibit intriguing 

behavior 
  The motion repeats after a 
     small number of turns 
  This is known as a 
     resonance condition 

  Perturbations of the beam 
    at this resonant frequency 
    can change the character 
    of particle motion quite 
    a lot 
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Not so Boring: Example from the Java Applet 

   http://www.toddsatogata.net/2011-USPAS/Java/ 
  The phase space looks very different for Q=0.334 

even when turning on one small sextupole… 
  And monsters can appear when b2 gets quite large… 
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What is Happening Here? 

  Even the simplest of nonlinear maps exhibits complex 
behavior 
  Frequency (tune) is no longer independent of amplitude 

•  Recall tune also depends on particle momentum (chromaticity) 
  Nonlinear kicks sometimes push “with” the direction of 

motion and sometimes “against” it 

  (Todd sketches something hastily on the board here  ) 
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Resonance Conditions Revisited 

  In general, we have to worry about all tune conditions 
where 

     in an accelerator, where m, n, l are integers. Any of these 
resonances results in repetitive particle motion 

In general we really only have to 
worry when m,n are “small”, 
up to about 8-10 
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Discrete Hamiltonians 

  Let’s recast our original linear map in terms of a discrete 
Hamiltonian 
  Normalized circular motion begs for use of polar coordinates 
  In dynamical terms these are “action-angle” coordinates 

•  action J: corresponds to particle dynamical energy 

  Linear Hamiltonian: 
  Hamilton’s equations: 

  J (radius, action) does not change 
•  Action is an invariant of the linear equations of motion 
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Discrete Hamiltonians II 

  Hamiltonians terms correspond to potential/kinetic energy 
  Adding (small) nonlinear potentials for nonlinear magnets 
  Assume one dimension for now (y=0) 
  We can then write down the sextupole potential as 

  And the new perturbed Hamiltonian becomes 

  The sextupole drives the 3Q=k resonance 
  Next time we’ll use this to calculate where those triangular 

sides are, including fixed points and resonance islands 
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Review 

  One-turn one-dimensional linear accelerator motion 

  Normalized coordinates (motion becomes circular rotations) 
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Action-Angle (Polar) Coordinates 

  One more coordinate transformation: action-angle coordinates 

  These are simply polar coordinates 
  But J acts as an “action” or total energy of the system 
  Note that rotations do not change J: this action is an invariant 

  Many dynamical systems reduce to action-angle coordinates 
  Simple harmonic oscillators, coupled pendula, crystal lattices… 
  Any dynamical system with a natural scale of periodicity 
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Discrete Hamiltonian 

  Hamiltonian: dynamics from total energy of system 
  Relates differential equations for a coordinate (position) 
     and a related (“canonical”) momentum 

  Example: Simple (spring) harmonic oscillator 

  The Hamiltonian energy of the system gives the dynamics 
(equation of motion) 
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Discrete Hamiltonian II 

  In our linear accelerator system, the Hamiltonian is simple 
  But it’s also important to notice that it’s discrete! 
     is a position and J is the corresponding canonical momentum 

  Hamiltonians are very useful when systems are “nearly” linear 
  We add small nonlinear perturbations to the above regular motion 
  This approach often gives the good insights into the dynamics 
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The Henon Map and Sextupoles 

  Sextupoles are the most common magnet nonlinearities in 
accelerators 
  Necessary for correcting chromaticity (dependence of focusing 

strength of quadrupoles with particle momentum) 
  Our linear system with one sextupole kick is also a classic 

dynamics problem: the Henon Map 
  http://www.toddsatogata.net/2011-USPAS/Java/henon.html 

Q=0.332 
b2=0.04 

Q=0.332 
b2=0.00 

Fixed points 

Separatrix 
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Sextupole Hamiltonian 

  Let’s calculate the locations of the nontrivial fixed points 
  Here note that the linear tune Q must be close to 1/3 since 

the tune of particles at the fixed points is exactly 1/3 
  The sextupole potential is like the magnetic potential 

  Recall that the sextupole field is quadratic 
  The field is the derivative of the potential, so the potential is cubic 

  We also assume that     and    are small (perturbation theory) 
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More Sextupole Hamiltonian 

  We want to find points where                and              after 
three iterations of this map (three turns) 

  Every turn,     
  Every turn, 
  The          and          “average out” over all three turns 
  But the             and             do not since their arguments 

advance by                                     every turn 
     
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Three-Turn Map 

  We can now approximate the three-turn map as three 
applications of the (approximately constant) one-turn map 

times 3 for 
3-turn map! 

cos 3φ

sin 3φ
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Fixed Points 

  The fixed points are located where                              and 

  The fixed point phases are found where 

  The fixed point actions are found where     

sin 3φFP = 0 φFP = 0,
π

3
,
2π

3
,π,

4π

3
,
5π

3
(six!)
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Wow, it seems to work! 

Q=0.332 
b2=0.04 

Fixed points 

Separatrix 

sin 3φFP = 0 φFP = 0,
π

3
,
2π

3
,π,

4π

3
,
5π

3
(six!)

Q=0.334 
b2=0.04 � = 0.00667� = −0.00133

JFP scales with �2

xN,FP scales with �


