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Introduction to Accelerator Physics 
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Nonlinear Dynamics 
Examples in Accelerator Physics 

Todd Satogata (Jefferson Lab) 
email satogata@jlab.org 

http://www.toddsatogata.net/2011-ODU 

Tuesday Nov 22-Tuesday Nov 29 2011 
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Class Schedule 

  We have only a few more weeks of class left 
  Here is a modified version of the syllabus for the 

remaining weeks including where we are  

  Fill in your class feedback survey!  

Thursday 17 Nov Synchrotron Radiation II, Cooling 
Tuesday 22 Nov Nonlinear Dynamics I 
Thursday 24 Nov No class (Thanksgiving!) 
Tuesday 29 Nov Nonlinear Dynamics II 
Thursday 1 Dec Survey of Accelerator Instrumentation 
Tuesday 6 Dec Oral Presentation Finals (10 min ea) 
Thursday 8 Dec No class (time to study for exams!) 
Exam week Do well on your other exams! 
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Transverse Motion Review 
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Maps 

  This “one-turn” matrix M can also be viewed as a map 
  Phase space (x,x’) of this 2nd order ordinary diff eq is 
  M is an isomorphism of this phase space: 



T. Satogata / Fall 2011                 ODU Intro to Accel Physics 5 

Poincare’ Surfaces of Section 

  Poincare’ surfaces are used to visualize complicated “orbits” in 
phase space 
  Intersections of motion in phase space with a subspace 
  Also called “stroboscopic” surfaces 

•  Like taking a periodic measurement of (x,x’) and plotting them 
•  Here our natural period is one accelerator revolution or turn 

  Transforms a continuous system into a discrete one! 
  Originally used by Poincare’ to study celestial dynamic stability 
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Linear and Nonlinear Maps 

  M here is a discrete linear transformation 
  Derived from the forces of explicitly linear magnetic fields 
  Derived under conditions where energy is conserved 
  M is also expressible as a product of scalings and a rotation 

  Here V is the scaling that transforms the phase space ellipse 
into a circle (normalized coordinates) 

  Well-built accelerators are some of the most linear man-
made systems in the world 
  Particles circulate up to tens of billions of turns (astronomical!) 
  Negligibly small energy dissipation, nonlinear magnetic fields 

•  Perturbations of o(10-6) or even smaller 
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Nonlinear Magnets 

  But we can also have nonlinear magnets (e.g. sextupoles) 
  These are still conservative but add extra nonlinear kicks 

  These nonlinear terms are not easily expressible as matrices 
  Strong sextupoles are necessary to correct chromaticity 

•  Variation of focusing (tune) over distribution of particle momenta 
•  These and other forces make our linear accelerator quite nonlinear 
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Nonlinear Maps 

  Consider a simplified nonlinear accelerator map 
  A linear synchrotron with a single “thin” sextupole 

  One iteration of this nonlinear map is 
one turn around the accelerator 
  Thin element: only x’ changes, not x 

  Interactive Java applet at 
     http://www.toddsatogata.net/2011-USPAS/Java/ 
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The “Boring” Case 

  When           we just have our usual linear motion 
  However, rational tunes where Q=m/n exhibit intriguing 

behavior 
  The motion repeats after a 
     small number of turns 
  This is known as a 
     resonance condition 

  Perturbations of the beam 
    at this resonant frequency 
    can change the character 
    of particle motion quite 
    a lot 
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Not so Boring: Example from the Java Applet 

   http://www.toddsatogata.net/2011-USPAS/Java/ 
  The phase space looks very different for Q=0.334 

even when turning on one small sextupole… 
  And monsters can appear when b2 gets quite large… 
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What is Happening Here? 

  Even the simplest of nonlinear maps exhibits complex 
behavior 
  Frequency (tune) is no longer independent of amplitude 

•  Recall tune also depends on particle momentum (chromaticity) 
  Nonlinear kicks sometimes push “with” the direction of 

motion and sometimes “against” it 

  (Todd sketches something hastily on the board here  ) 
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Resonance Conditions Revisited 

  In general, we have to worry about all tune conditions 
where 

     in an accelerator, where m, n, l are integers. Any of these 
resonances results in repetitive particle motion 

In general we really only have to 
worry when m,n are “small”, 
up to about 8-10 
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Discrete Hamiltonians 

  Let’s recast our original linear map in terms of a discrete 
Hamiltonian 
  Normalized circular motion begs for use of polar coordinates 
  In dynamical terms these are “action-angle” coordinates 

•  action J: corresponds to particle dynamical energy 

  Linear Hamiltonian: 
  Hamilton’s equations: 

  J (radius, action) does not change 
•  Action is an invariant of the linear equations of motion 
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Discrete Hamiltonians II 

  Hamiltonians terms correspond to potential/kinetic energy 
  Adding (small) nonlinear potentials for nonlinear magnets 
  Assume one dimension for now (y=0) 
  We can then write down the sextupole potential as 

  And the new perturbed Hamiltonian becomes 

  The sextupole drives the 3Q=k resonance 
  Next time we’ll use this to calculate where those triangular 

sides are, including fixed points and resonance islands 
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Review 

  One-turn one-dimensional linear accelerator motion 

  Normalized coordinates (motion becomes circular rotations) 
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Action-Angle (Polar) Coordinates 

  One more coordinate transformation: action-angle coordinates 

  These are simply polar coordinates 
  But J acts as an “action” or total energy of the system 
  Note that rotations do not change J: this action is an invariant 

  Many dynamical systems reduce to action-angle coordinates 
  Simple harmonic oscillators, coupled pendula, crystal lattices… 
  Any dynamical system with a natural scale of periodicity 



T. Satogata / Fall 2011                 ODU Intro to Accel Physics 17 

Discrete Hamiltonian 

  Hamiltonian: dynamics from total energy of system 
  Relates differential equations for a coordinate (position) 
     and a related (“canonical”) momentum 

  Example: Simple (spring) harmonic oscillator 

  The Hamiltonian energy of the system gives the dynamics 
(equation of motion) 
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Discrete Hamiltonian II 

  In our linear accelerator system, the Hamiltonian is simple 
  But it’s also important to notice that it’s discrete! 
     is a position and J is the corresponding canonical momentum 

  Hamiltonians are very useful when systems are “nearly” linear 
  We add small nonlinear perturbations to the above regular motion 
  This approach often gives the good insights into the dynamics 
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The Henon Map and Sextupoles 

  Sextupoles are the most common magnet nonlinearities in 
accelerators 
  Necessary for correcting chromaticity (dependence of focusing 

strength of quadrupoles with particle momentum) 
  Our linear system with one sextupole kick is also a classic 

dynamics problem: the Henon Map 
  http://www.toddsatogata.net/2011-USPAS/Java/henon.html 

Q=0.332 
b2=0.04 

Q=0.332 
b2=0.00 

Fixed points 

Separatrix 
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Sextupole Hamiltonian 

  Let’s calculate the locations of the nontrivial fixed points 
  Here note that the linear tune Q must be close to 1/3 since 

the tune of particles at the fixed points is exactly 1/3 
  The sextupole potential is like the magnetic potential 

  Recall that the sextupole field is quadratic 
  The field is the derivative of the potential, so the potential is cubic 

  We also assume that     and    are small (perturbation theory) 
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More Sextupole Hamiltonian 

  We want to find points where                and              after 
three iterations of this map (three turns) 

  Every turn,     
  Every turn, 
  The          and          “average out” over all three turns 
  But the             and             do not since their arguments 

advance by                                     every turn 
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Three-Turn Map 

  We can now approximate the three-turn map as three 
applications of the (approximately constant) one-turn map 

times 3 for 
3-turn map! 

cos 3φ

sin 3φ
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Fixed Points 

  The fixed points are located where                              and 

  The fixed point phases are found where 

  The fixed point actions are found where     

sin 3φFP = 0 φFP = 0,
π

3
,
2π

3
,π,

4π

3
,
5π

3
(six!)
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Wow, it seems to work! 

Q=0.332 
b2=0.04 

Fixed points 

Separatrix 

sin 3φFP = 0 φFP = 0,
π
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Q=0.334 
b2=0.04 � = 0.00667� = −0.00133

JFP scales with �2

xN,FP scales with �


