Introduction to Accelerator Physics
Old Dominion University

Nonlinear Dynamics
Examples in Accelerator Physics

Todd Satogata (Jefferson Lab)
email satogata@)jlab.org
http://www.toddsatogata.net/2011-ODU

Tuesday Nov 22-Tuesday Nov 29 2011

> (% &JSA
Jefferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics 1 @



Class Schedule

= We have only a few more weeks of class left

= Here is a modified version of the syllabus for the
remaining weeks including where we are

Thursday 17 Nov

Synchrotron Radiation Il, Cooling

Tuesday 22 Nov

Nonlinear Dynamics |

Thursday 24 Nov

No class (Thanksgiving!)

Tuesday 29 Nov

Nonlinear Dynamics Il

Thursday 1 Dec

Survey of Accelerator Instrumentation

Tuesday 6 Dec

Oral Presentation Finals (10 min ea)

Thursday 8 Dec

No class (time to study for exams!)

Exam week

Do well on your other exams!

= Fill in your class feedback survey!

g
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Transverse Motion Review
Hill's equation z" + K(s)z =0

quasi — periodic ansatz solution xz(s) = A+/B(s) cos|p(s) + ¢o]

amplitude function | B(s) = B(s + C) _ 1 +af(s)?
1 7= "5
derivative as) = =5 B'(s)  o(s) = 5622) phase advance

Matrix formulation of one — period motion

(x) _ (cos Ao + a(0) sin Ape B(0) sin Agc > (x)
s+C S0

—7(0) sin Agc cos Apo — a(0) sin Age ) \@/

Ape 1 [5FC gs

betatron tune @ Q= or  or . B(s) Tr M = 2cos(27Q)

M = Icos Apc + Jsin Apc I:((l) (1)) J:(a(O) 5(0))

JP=-1 = M=¢m%0 KA
" &
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Maps

! —(0) sin(27Q) cos(2mQ) — a(0) sin(27Q)

( T )SO+C _ ( cos(2mQ) + a(0) sin(27Q) B(0) sin(27Q) ) ( T )SO

* This “one-turn” matrix M can also be viewed as a map
= Phase space (x,x’) of this 2" order ordinary diff eq is ® x R = R?
= M is an isomorphism of this phase space: M : R®? — R?

0.06

3(0) = 50 m

0.04 _04(0) = -1
Q = 0.2334

0.02

0 n

-0.02

-0.04

-0.06 L 1 L L ! ! L

- plot x, Qj every turn 2 45 4 05 0 05 1 15 2
X (turn 0)
at this location in the lattice Poincare’ surface of section
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Poincare’ Surfaces of Section

Poincare’ section of
| forced Duffing equation

Henri Poincare’

» Poincare’ surfaces are used to visualize complicated “orbits” in
phase space

Intersections of motion in phase space with a subspace

Also called “stroboscopic” surfaces
 Like taking a periodic measurement of (x,x’) and plotting them
* Here our natural period is one accelerator revolution or turn
Transforms a continuous system into a discrete one!

Originally used by Poincare’ to study celestial dynamic stability
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Linear and Nonlinear Maps

M here is a discrete linear transformation
= Derived from the forces of explicitly linear magnetic fields
= Derived under conditions where energy is conserved

= M is also expressible as a product of scalings and a rotation
1

v () (nte ey (V)
75 V3 —sin(27Q) cos(27Q) 5 U8
= Here V is the scaling that transforms the phase space ellipse
into a circle (normalized coordinates)

Well-built accelerators are some of the most linear man-
made systems in the world

= Particles circulate up to tens of billions of turns (astronomicall!)

= Negligibly small energy dissipation, nonlinear magnetic fields
 Perturbations of 0(10°) or even smaller

@
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Nonlinear Magnets

= But we can also have nonlinear magnets (e.g. sextupoles)

= These are still conservative but add extra nonlinear kicks
, , 1 B'L

sextupole kick Az’ = —

2 (Bp)
= These nonlinear terms are not easily expressible as matrices

= Strong sextupoles are necessary to correct chromaticity
» Variation of focusing (tune) over distribution of particle momenta
» These and other forces make our linear accelerator quite nonlinear

(2 + y?) = ba(2® + y7)
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Nonlinear Maps

» Consider a simplified nonlinear accelerator map
= A linear synchrotron with a single “thin” sextupole

[ cos(2m@) + a(0) sin(27Q) 5(0) sin(27Q)
M = ( —~(0) sin(27Q) cos(27Q) — a(0) sin(27Q) )

i X
(), em(2)
80—|—C S0

/ R/ 2
'CUS()—}—C _ :’U80—|—C —I_ b2x80+c

Henon map

* One iteration of this nonlinear map is
one turn around the accelerator

= Thin element: only X’ changes, not x

g = Interactive Java applet at
sextupole kick http://www.toddsatogata.net/2011-USPAS/Java/
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The “Boring” Case

= When b, = 0 we just have our usual linear motion
= However, rational tunes where Q=m/n exhibit intriguing

behavior

= The motion repeats after a
small number of turns

= This is known as a
resonance condition

= Perturbations of the beam

at this resonant frequency
can change the character
of particle motion quite

a lot
= Nonlinearities!

)
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B(0 ) =50 m
a(0) = ~1
0.04
' Q=2/7=0.285714...
002
0 [
-0.02 +
-004 +
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Not so Boring: Example from the Java Applet

= http://www.toddsatogata.net/2011-USPAS/Java/

= The phase space looks very different for Q=0.334
even when turning on one small sextupole...

= And monsters can appear when b2 gets quite |

o
0’ o s
ae®” e g
ﬂﬂﬂﬂﬂ 4
]
1
1
1
1

arge...

e oftp

w“"w

umber of iterations : 1000 mort umber of itera Number of iterations : 1000 (1000 mort)
Use the slide to pick a value for Q : = 0.334 Use the slide to pick a value for Q : = 0.334 Use the slide to pick a value for Q : - 0.319
Use the slide to pick a value for b2: - 0.0 Use the slide to pick a value for b2: - 0.015 Use the slide to pick a value for b2: - 1.0

2 & JSA
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What is Happening Here?

= Even the simplest of nonlinear maps exhibits complex
behavior
» Frequency (tune) is no longer independent of amplitude
» Recall tune also depends on particle momentum (chromaticity)

= Nonlinear kicks sometimes push “with” the direction of
motion and sometimes “against” it

= (Todd sketches something hastily on the board here © )

> JSA
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Resonance Conditions Revisited

= |n general, we have to worry about all tune conditions
where
Mm@y £nQy =1

in an accelerator, where m, n, | are integers. Any of these
resonances results in repetitive particle motion

11.4
In general we really only have to ¢
worry when m,n are “small”, ; AN
up to about 8-10 % 11 ;\"\"/ "’5
z N % #
; *——-,(/_ - ‘\.:\-\II'H 7
10.8 v
28.6 28.8 29 29.2 29.4

Horizontal Tune

%
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Discrete Hamiltonians

» Let's recast our original linear map in terms of a discrete
Hamiltonian

= Normalized circular motion begs for use of polar coordinates

= |n dynamical terms these are “action-angle” coordinates (J, ¢)
 action J: corresponds to particle dynamical energy

J:(xi+$fn2)/2 T, = V2Jcoso
r = V2Jsin¢
= Linear Hamiltonian: H =27QJ
= Hamilton’s equations: OH
A¢p = 97 = 2@ (Sensible!)
OH
A = —— =
J 96 0

J (radius, action) does not change
» Action is an invariant of the linear equations of motion
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Discrete Hamiltonians Il

= Hamiltonians terms correspond to potential/kinetic energy
» Adding (small) nonlinear potentials for nonlinear magnets
= Assume one dimension for now (y=0)
= We can then write down the sextupole potential as

b2 3 b2 3/2 3

‘/;eXt — gafn — §(2J) / cOS ¢ (riff on trig calculations)

f cos® ¢ = }I(COS3¢+3COS ?)

bav/ 2

Veext = 26 J3/2(3 cos ¢ + cos 3¢)

= And the new perturbed Hamiltonian becomes
bav/ 2
H(J,¢)=2mQJ + %JS/Z(Scosgb + cos 3¢)

* The sextupole drives the 3Q=k resonance

= Next time we’'ll use this to calculate where those triangular
sides are, including fixed points and resonance islands

> JSA
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Review

= One-turn one-dimensional linear accelerator motion

( : ) o =M <3>< - ) M(s) = Icos(2mQ) + J(s) sin(27Q) = *7@/ ()

_( als)  B(s) 2(s) = —I (independent of s
J(S)_<—7(S) —a<s>) Je) = (independentoly

= Normalized coordinates (motion becomes circular rotations)

sin(27r@Q)  cos(2wQ)

) ) =) ( o ) /}/ M:C) / \.\\R(ZQ)
NP
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Action-Angle (Polar) Coordinates

A A J

/\.\\R(—%Q) A\ b—d—2mQ,J = J
j >

= One more coordinate transformation: action-angle coordinates

xN:\/ZJCOS¢ 7 37?\74—33/]\2[
Ty = —V2Jsin ¢ B 2

= These are simply polar coordinates

= But J acts as an “action” or total energy of the system

= Note that rotations do not change J: this action is an invariant
» Many dynamical systems reduce to action-angle coordinates
= Simple harmonic oscillators, coupled pendula, crystal lattices...
= Any dynamical system with a natural scale of periodicity

> JSA
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Discrete Hamiltonian

= Hamiltonian: dynamics from total energy of system
» Relates differential equations for a coordinate (position) x
and a related (“canonical”) momentum Pz

_oH . 0H
T Op, TTT T on

T

= Example: Simple (spring) harmonic oscillator
2

1
H=PE +KE. = —kz? + =
2 2m
. OH p, . OH -
rT = = — r = — = = —
op, m P Ox
mi=p,=—-kxr = mr+krxr=0

= The Hamiltonian energy of the system gives the dynamics
(equation of motion)

)
Jefferson Lab T. Satogata / Fall 2011 ODU Intro to Accel Physics

Wiliam Rowan Hamilton (1805-1865)

17



Discrete Hamiltonian Il

= |n our linear accelerator system, the Hamiltonian is simple
= But it's also important to notice that it's discrete!
= ¢ is a position and J is the corresponding canonical momentum

H(p,J) =21QJ

OH

= 0 (conserved
57 ( )
* Hamiltonians are very useful when systems are “nearly” linear

= \We add small nonlinear perturbations to the above regular motion
= This approach often gives the good insights into the dynamics

%
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The Henon Map and Sextupoles

= Sextupoles are the most common magnet nonlinearities in
accelerators

» Necessary for correcting chromaticity (dependence of focusing
strength of quadrupoles with particle momentum)
= Qur linear system with one sextupole kick is also a classic
dynamics problem: the Henon Map
L http://www.toddsvatoqata..net/201 1-USPAS/Java/henon.html

Fixed points

Separatrix

5 ‘ JSA
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Sextupole Hamiltonian

» Let’s calculate the locations of the nontrivial fixed points

= Here note that the linear tune Q must be close to 1/3 since
the tune of particles at the fixed points is exactly 1/3
= The sextupole potential is like the magnetic potential
= Recall that the sextupole field is quadratic
= The field is the derivative of the potential, so the potential is cubic

b A
Vsext = b—2$i — —2(2J)3/2 cos® 0 N = V2J cos ¢
. 3 rly = —V2Jsin ¢
bov/ 2
Viext = 2{ J3/2(3 coSs ¢ + cos 3¢)
bov/ 2 1
H(J,¢) =21QJ + %_J3/2(3 cos ¢ + cos 3¢) Q = 3 e

= We also assume that b2 and € are small (perturbation theory)

> JSA
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More Sextupole Hamiltonian

b2\/(!]3/2

H(J,¢) =21QJ + c (3 cos ¢ + cos 3¢)
Ap = ?;][ = 21Q + 62\/_J1/2(3608¢+(3083¢)
AJ = —%JZ = b2fj3/2(sinqb + sin 3¢)

= We want to find points where A¢ = 27 and AJ = 0 after
three iterations of this map (three turns)

= Every turn, A¢ ~ 27Q = 27/3 + 27e
= Everyturn, AJ = 0
= The sin¢ and cos ¢ “average out” over all three turns

= But the sin(3¢) and cos(3¢) do not since their arguments
advance by 3A¢ =~ 27w + 67e = 27 every turn

>
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Three-Turn Map

= \We can now approximate the three-turn map as three
applications of the (approximately constant) one-turn map

OH

Ap=— =27 J1/23 + cos 3¢)
times 3 for ¢ 0J Q }9/ ¢
3-turn map!

H b
AJ = ?‘kb 22 J3/2M+ sin 3¢)
b 2 1.5 o
A¢(3 turns) = 27 + 67e + 5 24\[J1/2 cos 3¢ v
. °r cos 3¢
3bav/2 < T i
AJ(3 turns) 2\/_J3/2 sin 3¢ 05 K "

25 2 15 -1 05 0 05 1 15 2 25

x_N
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Fixed Points

AJ(3 turns) =

= The fixed points are located where A¢(3 turns) = 27 and
AJ(3 turns) =0

= The fixed point phases are found where AJ(3 turns) = 0

T 2T 47‘("5_71' (SiX!)

sin 3¢rp = 0 ¢FP=03 5T 303

= The fixed point actions are found where A¢(3 turns) = 27

3b _ 2
Grre + 2V/2 1/2 _0 Jop — < 87re>
4 bov/2

) JSA
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Wow, it seems to work!

Fixed points
Separatrix
Q=0.332 _
oz €= —0.0013
T 27 47 dm
=0. —. — _— —
¢FP 737377T7373

P
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oSSt € =0.00667

—8&Te 2
Jrp —
o (bzﬂ>

Jrp scales with €2

x N Fp scales with e
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