Errata to "An Introduction to the Physics of Particle Accelerators", 2nd Ed.

Mario Conte and William W. MacKay

Chapter 3

1. p. 54: Line before Eq. (3.95): Change "Subtracting $1 \ldots$..." to "Subtracting I ...".
2. p. 60: Add $+\mathcal{O}\left(h^{3}\right)$ to Eq. (3.128).
3. p. 61: Eq. (3.133) should read:

$$
b=-\frac{2^{1 / 3}}{1-2^{1 / 3}}
$$

4. p. 61 , second line from bottom: First condition of bilinearity should read:

$$
[a x+b y, z]=a[x, z]+b[y, z]
$$

5. p. 65 , line after Eq. (3.143) should read: which is not quite antisymmetric. . .
6. p. 68, line after Eq. (3.167): Change "term" to "terms".
7. Problem 3-3, second line: Change the reference number " 78 " to " 7,8 ".
8. Problem 3-9, line after equation should start: Note that this gives

Chapter 4

9. p. 87 , Eq. (4.57) should be

$$
\vec{B}(s)=B_{0} \hat{s} \frac{\sqrt{l^{2}+4 a^{2}}}{2 l}\left[\frac{s}{\sqrt{s^{2}+a^{2}}}+\frac{l-s}{\sqrt{(s-l)^{2}+a^{2}}}\right] .
$$

10. p. 88, The last line of Eq. (4.59) should read:

$$
=-B_{0} \frac{\sqrt{l^{2}+4 a^{2}}}{2 l}\left(\frac{a^{2}}{\left(s^{2}+a^{2}\right)^{3 / 2}}-\frac{a^{2}}{\left[(s-l)^{2}+a^{2}\right]^{3 / 2}}\right) r
$$

11. p. 92: Problems 4-9 and 4-10 are essentially identical. I'm not sure how that happened. Delete 4-10.
12. p. 94: The last term inside the brackets of the equation for A_{z} in part b of problem 4-15 should have a cosine rather than a sine function.

Chapter 5

13. p. 97, 3rd line after Eq. (5.3): Change "eigenvaluesof" to "eigenvalues of"
14. p. 99, 6th line from bottom: Change "this of solution" to "this solution".
p. 113, Problem 5-11, the $2^{\text {nd }}$ conversion formula should be: $\epsilon_{95 \%} \simeq 5.991 \epsilon_{\mathrm{rms}}$.

Chapter 6

Version: 9 June, 2011
15. p. 121, Fig. 6.2 should be changed to:

16. p. 128, In Eq. 6.67 and the following line, replace A and B with \mathbf{A} and \mathbf{B}
17. p. 129, 4 lines before Eq. (6.89): The second sentence of the paragraph is wrong. There are some cases of stable matrices with equal tunes and some coupling elements. One example is

$$
\mathbf{M}=\left(\begin{array}{cccc}
\cos \mu & \sin \mu+\frac{a^{2}}{\sin \mu} & a & 0 \\
-\sin \mu & \cos \mu & 0 & -a \\
a & 0 & \cos \mu & \sin \mu+\frac{a^{2}}{\sin \mu} \\
0 & -a & -\sin \mu & \cos \mu
\end{array}\right)
$$

18. p. 132, Eq. (6.98) should read

$$
\mathbf{T}^{-1}=\left(\begin{array}{cc}
\tilde{\mathbf{M}} & \tilde{\mathbf{M}} \\
\tilde{\mathbf{n}} & \tilde{\mathbf{N}}
\end{array}\right)=\left(\begin{array}{cccc}
f & -b & p & -k \\
-e & a & -n & j \\
h & -d & r & -m \\
-g & c & -q & l
\end{array}\right)
$$

Chapter 7

19. p. 162, Problem 7-3: Replace " γ tr" with " γ_{tr} ".
20. p. 162, Problem 7-3: The atomic number of gold is $A=197$ and not 179 .

Chapter 8

21. p. 166, 4 lines before Eq. (8.13) and again 3 lines after Eq. (8.15): Change "loose" to "lose".
22. p. 168 , First line: There should not be a bar over the derivative $\left(d U_{\gamma} / d U\right)_{s}$. (I don't know if this is in all copies. It appears to be a flaw in printing process, since it wasn't in the original electronic files.)
23. p. 169, 3 lines before Eq. (8.37): Change "loose" to "lose".
24. p. 173, Replace the two lines ("In averaging $A d(\Delta A)$ over . . . becomes") before Eq. (8.63) with "Dropping the second order differentials, Eq. (8.62) combined with Eq. (8.61) yields"
25. p. 177 , Eq. (8.89) should read:

$$
\omega \propto \frac{1}{\delta t} \propto \frac{\gamma^{3}}{\rho}
$$

26. p. 180, In Eq. (8.104), the right-hand side should be

$$
\cdots=\frac{1}{c \tau_{s}} \oint N_{\gamma}\left\langle u_{\gamma}^{2}\right\rangle d s
$$

Version: 9 June, 2011
27. p. 186, Problem 8-5: The last part should be labelled "c" not "b".

Chapter 10

28. p. 214 , In Eq. (10.9) the M_{12} term of the matrix should be " $\beta \sin \mu$ ".
29. p. 229, Problem 8-2: There should be an additional factor of x in the second term on the left side of the equation.
Chapter 11
30. p. 233, Eq. (11.17) should read:

$$
\delta Q_{\mathrm{V}}=-\frac{\beta_{\mathrm{V}} N r_{0}}{2 \pi B_{f} \sigma_{\mathrm{V}}\left(\sigma_{\mathrm{H}}+\sigma_{\mathrm{V}}\right) \beta^{2} \gamma^{3}}
$$

31. p. 233, 2 lines after Eq. (11.17): Change $\beta^{3} \gamma^{2}$ to $\beta^{2} \gamma^{3}$.

Chapter 13

32. p. 275, Eq. (13.42) should read:

$$
M_{\nu}^{\mu}=\Lambda\left(-\delta \vec{\beta}^{\prime}\right)^{\mu}{ }_{\kappa} R_{x}(\theta)^{\kappa}{ }_{\nu}+\mathcal{O}\left(\delta \beta^{2}\right)=R_{x}(\theta)^{\mu}{ }_{\kappa} \Lambda\left(-\delta \vec{\beta}^{\prime}\right)^{\kappa}{ }_{\nu}+\mathcal{O}\left(\delta \beta^{2}\right)
$$

33. p. 284, Eq. (13.106) should read

$$
\frac{d S^{\mu}}{d \tau}=\frac{q}{m}\left[F^{\mu \nu}+\frac{g-2}{2}\left(F^{\mu \nu}+\beta^{\mu} F^{\nu \kappa} \beta_{\kappa}\right)\right] S_{\nu}
$$

34. p. 284, Eq. (13.107) should read

$$
\frac{d p^{\mu}}{d \tau}=\frac{q}{m} F^{\mu \nu} p_{\nu}
$$

35. p. 296, Eq. (13.191) should read

$$
\mathbf{D}_{\tilde{z}}^{1}(\theta)=\left(\begin{array}{ccc}
\frac{\cos \theta+1}{2} & \frac{i \sin \theta}{\sqrt{2}} & \frac{\cos \theta-1}{2} \\
\frac{i \sin \theta}{\sqrt{2}} & \cos \theta & \frac{i \sin \theta}{\sqrt{2}} \\
\frac{\cos \theta-1}{2} & \frac{i \sin \theta}{\sqrt{2}} & \frac{\cos \theta+1}{2}
\end{array}\right) .
$$

36. p. 302, First line should be changed to: Using this with $\vec{E}=0$, Eq. (13.68) transforms into ...
37. p. 302, The second line of Eq. (31.212) is missing a factor of i.
38. p. 313 , In Eq. (13.261) $W_{\uparrow \downarrow}$ should be replaced by $W_{\downarrow \uparrow}$.
39. p. 315, In problems $13-6$ and $13-7$, the undefined matrices $\mathbf{R}_{\hat{\jmath}}(\cdots)$ should be replaced by spinor rotation matrices $\mathbf{D}_{\hat{\jmath}}^{\frac{1}{2}}(\cdots)$.

Chapter 14

40. p. 327, The summation variable in Eq. (14.24) should be m and not i.

Appendix A

41. p. 337, Change first line of $\S A .9$ to "We define the phase slip factor"".
