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Midterm 2 Grade Distribution

» Midterm 2 class average score: 58.2 (+/- 21.2 std deviation)
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Full statistics will be in solutions on class website later today
Remember that | drop one midterm grade for final grading!
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Quick One-Dimensional Kinematics Review

= We're going to draw explicit analogies between angular
motion quantities and our old friends position, velocity, and
acceleration from one-dimensional kinematics

= Time for a bit of review

= Definitions of velocity and acceleration

dx
dt
= Constant acceleration motion

velocity v =

, dv
acceleration a = —

dt

T — o = vt + §at2

vV =g + at

= Centripetal acceleration related to tangential velocity

,02

Ucentrip — ?

i
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Angular Position

» What do we use for position in angular motion problems?
= The angle that an object is from a reference angle 6 = 0
= The sign convention is usually that clockwise is positive

= The @ = ( location, like x=0, is usually defined by the problem
« We care more about angular distances, A0 = 0(t2) — 0(t1)

= \We also always use radians where |27 rad = 360°
* 1 rad is the angle where the arc length is equal to the circle radius

CRCS

A0_90°——rad A =573°=1rad Af = 9295° — —rad

3800 —(27) rad = v rad

% =

= A conversion example: 225° (
1 @G €55A
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Angular Position: Importance of Radians

*» That radians thing? Yeah, that's important...

= |f we write angles in radians, we can write a tremendously
useful equation that relates the actual distance around the arc
s to angles and radii: S

s =rb
[

= Here s is the distance around the arc. This formula lets us
switch between real distances (like s and r, which are in
distance units like meters) and angular distances (which are in

radians)
= Example: 0:30°:%rad, r=2m = s:zm%1.05m

3

= Warning: This equation (and most others we’ll derive from
now on) only work if the angle 6 is in radians!

» Since a radian is a ratio, it really is technically “dimensionless”
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Angular Acceleration Picture (from text)

a, 1s the tangential
component of
acceleration a and is
parallel to the linear
velocity v.

a. is the radial component,
perpendicular to v.
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Constant Angular Acceleration

= Problems with constant angular acceleration are exactly
analogous to similar problems involving linear motion in

one dimension.
= The exact same equations apply, with

x—0, v—=w, a—o

Table 10.1 Angular and Linear Position, Velocity, and Acceleration

Linear Quantity Angular Quantity
Position x Angular position 6
Veloeityn = Angrlarvelodity @ = o
elocity v = — ngular velocity w = —
! dt 2 4 dt
d d? d d*6
Acceleration a = 2= —)26 Angular acceleration @ = 28 = o
dt  dt dt dt

Equations for Constant Linear Acceleration

Equations for Constant Angular Acceleration

v = %(vo + v) (2.8)
v =y, + at (2.7)

X =xy+ vt + %al‘2 (2.10)
vi=vd + 2a(x — xp) (2.11)

o = (0 + o) (10.6)
W= w, + at (10.7)
0 = 0, + wyt + ar’ (10.8)
w* = wf + 2a(0 — 6,) (10.9)

© 2012 Pearson Education, Inc
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= Torque tis the rotational analog of force, and results from
the application of one or more forces. The same force is applied

at different points on the
wrench.

= Torque is relative to a chosen rotation axis.

= Torgque depends on:
= the distance from the rotation axis to the force
application point. B
= the magnitude of the force F F
= the orientation of the force relative to the =
displacement 7 from axis to force application
point: —
T=rxF 71=rFsinf

Closest to O, 7 is smallest.

Farther away, 7 becomes larger.

The same force is applied at different angles. (b)
) » Torque decreases when F Torque is zero when Farthest away, 7 becomes greatest.
Torque is greatest when F is no longer perpendicular F is parallel to 7. ]

is perpendicular to r.

tor

(c)




Clicker Question 1

* The forces in the figures all have the same
magnitude. Which force produces zero torque?

ne force in figure (a)
ne force in figure (b)
ne force in figure (c)

| of the forces produce torque. e é\( -

(b)

AT
B. T
C.T
D. A

(c)
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Rotational Inertia and the Analog of Newton’s Law

= Rotational inertia / (or moment of inertia) is the rotational

analog of mass. Rotating the Farther away,
= Rotational inertia depends on the mass near the it’s harder
distribution of mass and its distance #1518 €asY- e |

from the rotation axis, similar to

Rotation axis
center of mass. al N

» Rotational acceleration, torque,
and rotational inertia combine
to give the rotational analog
of Newton’s second law F' = ma

T =1«

(or, more properly with vectors)
T =1«

like F = ma

) ©® 2012 Pearson Education, Inc. - \
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Connections Between Newton’s Laws

« Rotational Newton’s 2" law: T = [ ¢
= Whatis I? We've already defined torque and angular acceleration:

T:’I“F(Whenf’,ﬁare 1) a=ra = a=alr
= Substituting gives rf = 1I(a/r)
F = (ré) a

= This looks remarkably like [F' = ma when we make the

association
i
(—2> =m = |I=mr
7’0

> JSA
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Calculating Rotational Inertia

For a single point mass m, rotational inertia is the product of mass
with the square of the distance r from the rotation axis:

I = mr?

For a system of discrete masses, the
rotational inertia is the sum of the
rotational inertias of the individual

masses:
2
I = E m;r;

For continuous matter, the rotational The mass element dm contributes
. .. . . rotational inertia r“ dm.-.,,
inertia is given by an integral over the
distribution of matter: H
dm
I = / r dm .
’ Rotation
f 7 dm Rais

Similar to center of mass: ch =

M
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Some Rotational Inertias of Simple Objects

= We really do need to use calculus to figure out rotational inertias of
most simple (three-dimensional) geometrical objects

Solid sphere about diameter Flat plate about perpendicular axis
1= $MR? I=LM@+p?)

L
Thin rod about center Thin ring or hollow cylinder
I= T%MLZ about its axis
1= MR?
(b Hollow spherical shell about diameter
1=%MR?
Q Flat plate about central axis
- 1= Mad?

S

”

I .
M ;l'l;m %r(;(; Zg)out end %
Disk or solifl cylinder b /v‘
91

) JSA
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Quick Question

* Ahollow ball and a solid ball roll without slipping down an
inclined plane. Which ball reaches the bottom of the incline
first?

A.

The solid ball reaches the bottom first.

B. The hollow ball reaches the bottom first.
C.
D. We can’t determine this without information about the mass.

Both balls reach the bottom at the same time.

Solid sphere about diameter

I= 2 MR2 Hollow spherical shell about diameter
-

I=%MR?

2 2
Isolid — gMRQ dD Q Ihollow = gMRQ

%
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(Example Rotational Inertia Calculation)

= Rotational inertia of a thin rod of length L
and total mass M about its center axis

= Take small slices along the length
of the rod

= Mass of each little slice is

dr
dm = — | M
m (L) dm

PL
= Rotational inertia: T
= 1 ag72
I = / r2 dm LS g ME
Warning: Calculus

oA MO\ ML L\ M (1P ML
L L \3)|.,, L |24 24 )] L \12) 12

5

(A
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Parallel Axis Theorem

= |f we know the rotational inertia /., about an axis through the
center of mass of a body, the parallel-axis theorem allows us
to calculate the rotational inertia / through any parallel axis.

This axis 1s through

= The parallel-axis theorem -
states that s0 1 = %A{:Rz.
I =1+ Md

where d is the distance from
the center-of-mass axis to the
parallel axis and M is the total
mass of the object.

(a) (b)

*
*
.
*
.
.
*
.*

This parallel axis is
a distance d = R away
from the original axis,

%)

so ] = %MR2 + Md? = %MR'“.

)
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Example: Hula Hoop Rotational Inertia

= What is the rotational inertia of a f e u,:
hula hoop of radius r and mass | \
M around its edge? |

» |ts center of mass is (obviously)
at the center of the circle and all
of its mass is at the same radius

I.. = Mr?

= The parallel axis theorem gives
Tedge = M1r* + Mr* = 2M7r?

Interesting... It takes twice as much

torque to turn a ring around its U
edge as it takes to turn around its

_ 2 .
center. I'=Mr I =7

(

%

)
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Combining Linear and Rotational Motion

= \We now have the tools to do some
interesting problems...

= Bucket of mass m unrolls from a cylinder
of mass M and radius R into a well.

= Whatis the bucket’s (linear) acceleration?

; (L
e carefu C hnder = e’
Ebout sifgris! y Z

¢, 2
bucket cylinder Leytinder = §M R

=TRsinf =TR
Bucket : ZF:mg—T:ma ' o

a=a/R
mg — Ma/2 =ma \TR (%MR2>%
=12

_M/2—|—m = T =Ma/2

%
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Combining Rotational and Linear Dynamics

* |n problems involving both linear and rotational motion:
= IDENTIFY the objects and forces or torques acting.

= DEVELOP your solution with drawings and by writing Newton’ s law
and its rotational analog. Note physical connections between the

objects.
= EVALUATE to find the solution.

= ASSESS to be sure your answer makes sense.

A bucket of mass m drops | Free-body diagrams

into a well, its rope for bucket and cylinder
unrolling from a cylinder of ,
mass M and radius R. Rope tension T provides

, _ the connection
What' s its acceleration?

\-

—>

7

=\

.}eon Lab

Newton’ s law, bucket:

F...=mg-T=ma

net —

Rotational analogy of
Newton’ s law, cylinder:

RT = la/R
Here [=_ MR’
Solve the two equations to
get
mg

a=—" "
m+5M

JSA
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Rolling Motion

» Rolling motion combines translational (linear) motion
and rotational motion.

= The rolling object’s center of mass undergoes translational
motion.

= The object itself rotates about the center of mass.

= |n true rolling motion, the object moves without slipping and
its point of contact with the ground is instantaneously at rest.

= Then the rotational speed w and linear speed v are related
by v = wR, where R is the object’ s radius.

Motion of ... motion about ... motion of individual
the CM plus . the CM cqu als . points on the wheel.
"’g 2ch
\ The bottom of /: ch\\
the wheel is at
rest! But
These two velocity f)nly for an , 5

..... , instant. -
vectors sum to @ 1\ (& =% v
- ch

=0

zero velocity at bollom
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Rotational Energy

= A rotating object has kinetic energy K _ =1Iw” associated

with its rotational motion alone.

* |t may also have translational kinetic energy: K

trans

* |n problems involving energy conservation with rotating
objects, both forms of kinetic energy must be considered.

* For rolling objects, the two are related:
» The relation depends on the rotational inertia.

Example: A solid ball rolls down a hill. How
fast is it moving at the bottom?

N
o>
)
<
W

Energy bar
graphs 0

)
Jeffel'son Lab Prof. Satogata / Fall 2012

ODU

Equation for energy conservation
Mgh = LRV e
2 2
2

e L2 me (L) 2 D
2 205 R} 10

Solution:
10
7
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» Rotational motion in one dimension is exactly analogous to

Rotational

linear motion in one dimension.  Displacement
= Linear and angular motion: |

.}effergon Lab

motion

Position, x ==

= Analogies between rotational and linear quantities: |

Rotation

Relation Between Linear s

Linear Quantity Angular Quantity
or Equation or Equation and Angular Quantities
Position x Angular position 0

Speed v = dx/dt
Acceleration a

Mass m
Force F

. . 1
Kinetic energy K, = ;mv

Angular speed w = d/dt
Angular acceleration «

Rotational inertia /
Torque 7

Kinetic energy K, = 5/’

Newton’s second law (constant mass or rotational inertia):

F = ma

7=l

© 2012 Pearson Education, Inc.

Rotational inertia, /

. 2O,

vV = wr

a, = ar

I = frz dm

T = rFsin 6
Torque, 7

Rotation axis

Mass closer  Same mass,
to axis: farther from axis:
lower I greater [ T
0
I= mr?— J r2dm F
7 = rF sinf
Discrete Continuous _ @\ @JSA
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Direction of the Angular Velocity Vector

= The direction of angular velocity is given by the
right-hand rule.

= Curl the fingers of your right hand in the direction of rotation, and your
thumb points in the direction of the angular velocity vector

Q.

-4
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Direction of the Angular Acceleration

= Angular acceleration points in the direction of the change

in the angular velocity A : o
r .. Aw dw
a = lim =
a—0 At dt
= The change can be in the same direction as the angular
velocity, increasing the angular speed.
= The change can be opposite the angular velocity, decreasing
the angular speed.
= Or it can be in an arbitrary direction, changing the direction and
speed as well. A T A

N N
N a
Dipiial B l/r
mitia
/ A
'I

a
Wfinal
~
N

—

Winitial Wfinal

& @
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Direction of the Torque Vector

= The torque vector is perpendicular to both the force
vector and the displacement vector from the rotation

axis to the force application point.

= The magnitude of the torque is
T = rFsiné.

— Of the two p033|ble directions
perpendicular to r andF
the correct direction is given
by the right-hand rule.

— Torque is compactly
expressed using the vector

cross product:
r r

T=rxF

%

Start with the

vectors tail to Curl your fingers in a
tail.==., direction that rotates
X the first vector (r)

_---onto the second (ﬁ).

Then your
thumb points
in the direction

; of 7=7FXF.
’ P
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The Cross Product

= Forming from two vectors  and Aa third \ipctor of Cl‘

magnitude C = ABsin# and direction given by the right-hand
rule is called the cross product:

The cross product C of two vectors A and B is written

C=AXB

and 1s a vector with magnitude AB sin , where (/ is the angle between A and B, and
where the direction of C is given by the right-hand rule of Fig. 11.4.

* Some properties of cross Strtwiththe
vectors tail to Curl your fingers in a
. tail.* -, direction that rotates
p rOd u Cts : ! "’ the first vector ()
E _onto the second (ﬁ ).
1 1 1 1 F—>

AxB=-Bx A
r r r r r r r
Ax(B+C)=AxB+ AxC

Then your
thumb points
in the direction
of 7 =7 X F.

*e,
‘e
.
.

7 (out of page)

1 (A E1A
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Angular Momentum

* For a single particle, angular momentum L is a vector
given by the cross product of the displacement vector
from the rotation axis with the linear momentum of the

particle: .
L=;x£ .

— For the case of a particle in a
circular path, L = mvr, and L is
upward, perpendicular to the
circle.

— For sufficiently symmetric
objects, L is the product of
rotational inertia and angular
velocity:

“, v is perpendicular
“tor.

%{ L=Iw

D JSA
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Newton’ s Law and Angular Momentum

* In terms of angular momentum, the rotational analog of
Newton’ s second law is 1
r_dL
dt
= Therefore a system’ s angular momentum changes only if
there’ s a non-zero net torque acting on the system.

= |f the net torque is zero, then angular momentum is
conserved.

« Changes in rotational inertia then result in changes in
angular speed:

Mass closer to
axis: small 7,

large w, same

L=Iw

The skater’ s angular momentum
. is conserved, so her angular
Sy e anid fog speed increases when she

far from axis:

L large ], small o reduces her rotational inertia.

JSA
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Conservation of Angular Momentum

* The spinning wheel initially contains all the system’ s
angular momentum.

* When the student turns the wheel upside down, she
changes the direction of its angular momentum vector.

» Student and turntable rotate the other way to keep the
total angular momentum unchanged.

The student stands on a She flips the spinning

stationary turntable holding a wheel, reversing its angular

wheel that spins counterclockwise; momentum. The total angular

the wheel’s angular momentum momentum is conserved, so -

points upward. turntable and student (ts) must Ly

rotate the other way. i
X :_" Ligta1 = Lyheel o ﬁlﬁotal
S~ Y 9 S a
\ 2 RN
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Precession

= Precession is a three-dimensional phenomenon involving
rotational motion.

* Precession occurs when a torque acts on a rotating object, changing
the direction but not the magnitude of its angular momentum vector.

= As a result the rotation axis undergoes circular motion:

Precession of a gyroscope

Change AL is also into the page,
so the gyroscope precesses, its tip
describing a circle.

) ©2012 Pearson Education, e,
.}efferson Lab

v,
.

7 points into
the page.

Grévity exerts

a torque about the
pivot; 7 =7 X Fis
into the page.

Prof. Satogata / Fall 2012

Precession slowly changes
the direction of Earth’ s rotation axis

Torque causes axis
to precess.

Now\k L 13,000 years Near side is closer
i Futufe to Sun, so F} > F>;

the result is a
torque.

&
Sun @\ @JSA



= Angular quantities are vectors whose direction is generally
associated with the direction of the rotation axis.

= Specifically, direction is given by the right-hand rule.

= The vector cross product provides a compact representation
for torque and angular momentum.

Start with the
vectors tail to Curl your fingers in a
o tail, =, direction that rotates
i the first vector ()
_.--onto the second (ﬁ ).

)
", Then your
# thumb points
7 (out of page) - in the direction

of T=rXF.

= Angular momentuiii 1s uie rowauonal analog of linear
momentum: s_r

* |n the absence ofra r%t ex err‘(nini%rcﬂfé a sys’tem s angular
momentum is conserved.

%
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Clicker Question 1

* The forces in the figures all have the same
magnitude. Which force produces zero torque?

ne force in figure (a)
ne force in figure (b)
ne force in figure (c)

| of the forces produce torque. e é\( -

(b)

AT
B. T
C.T
D. A

(c)

) JSA
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Clicker Question 2

« Consider the dumbbell in the figure. How would its
rotational inertia change if the rotation axis were at
the center of the rod?

A. [ would increase.
B./ would decrease.
C. Il would remain the same.

— Ly
| \/\ ///

Pl @o.w K
=0t kg 9

) ©201 . Inc. @ @m
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Clicker Question 3

* The figure shows two identical masses m connected by a
string that passes over a frictionless pulley whose mass is
not negligible. One mass rests on a frictionless table while
the other hangs vertically, as shown. Compare the force of
tension in the horizontal and vertical sections of the string.

A. The tension in the horizontal section is greater.
B. The tension in the vertical section is greater.
C. The tensions in the two sections are equal.

Pulley mass M

m @ﬂv'

m

5 JSA
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Clicker Question 5

* Two forces of equal magnitude are applied to a door
at the doorknob. The first force is perpendicular to
the door, while the second force is applied at an
angle 20° to the plane of the door. Which force
produces the greater torque?

A. The first force
B. The second force

D. Both forces produce zero torque.

5 JSA
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Clicker Question 6

* A solid sphere subjected to a net torque will
experience

A.
B.
C
D
E.

an angular acceleration.

a linear acceleration.

. a constant angular velocity.

. a changing moment of inertia.

a linear acceleration and an angular acceleration.

> JSA
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Clicker Question 8

* Two uniform solid spheres have the same radius,
but one is three times more massive than the other.
What is the ratio of the larger moment of inertia to
that of the smaller moment of inertia?

moowx
SO O W
o

N
~
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