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Happy Birthday to Pierre-Gilles de Gennes (1991 Nobel), Wilhelm Weber, and Anton van Leeuwenhoek! 
Happy Food Day, World Development Information Day, and Get Midterm 2 Back Day! 
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§  Midterm 2 class average score: 58.2 (+/- 21.2 std deviation) 

 
§  Full statistics will be in solutions on class website later today 
§  Remember that I drop one midterm grade for final grading! 

Midterm 2 Grade Distribution 
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Quick One-Dimensional Kinematics Review 

§  We’re going to draw explicit analogies between angular 
motion quantities and our old friends position, velocity, and 
acceleration from one-dimensional kinematics 

§  Time for a bit of review 
§  Definitions of velocity and acceleration 

§  Constant acceleration motion 

§  Centripetal acceleration related to tangential velocity 

x− x0 = v0t+
1

2
at2 v = v0 + at

velocity v ≡ dx

dt
acceleration a ≡ dv

dt

�v

�acentrip

acentrip =
v2

r



Prof. Satogata / Fall 2012         ODU University Physics 226N/231N 4 

Angular Position 

§  What do we use for position in angular motion problems? 
§  The angle that an object is from a reference angle 
§  The sign convention is usually that clockwise is positive 
§  The             location, like x=0, is usually defined by the problem 

•  We care more about angular distances,   
§  We also always use radians where 

•  1 rad is the angle where the arc length is equal to the circle radius  

§  A conversion example: 

θ = 0
∆θ = θ(t2)− θ(t1)

2π rad = 360◦

∆θ = 90◦ =
π

2
rad ∆θ = 57.3◦ = 1 rad

r

r

r   	

   	

    	



∆θ = 225◦ =
5π

4
rad

225◦
�
2π rad

360◦

�
=

5

8
(2π) rad =

5π

4
rad

θ = 0
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Angular Position: Importance of Radians 

§  That radians thing? Yeah, that’s important… 
§  If we write angles in radians, we can write a tremendously 

useful equation that relates the actual distance around the arc 
s to angles and radii: 

§  Here s is the distance around the arc. This formula lets us 
switch between real distances (like s and r, which are in 
distance units like meters) and angular distances (which are in 
radians) 

§  Example:  

§  Warning: This equation (and most others we’ll derive from 
now on) only work if the angle     is in radians! 
§  Since a radian is a ratio, it really is technically “dimensionless” 

s = rθ
   	



rr
θ

s

θ

θ = 30◦ =
π

6
rad, r = 2 m ⇒ s =

π

3
m ≈ 1.05 m
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Angular Acceleration Picture (from text) 

at = α r

ar = acentrip =
v2

r
= ω2r
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Constant Angular Acceleration 

§  Problems with constant angular acceleration are exactly 
analogous to similar problems involving linear motion in 
one dimension. 
§  The exact same equations apply, with   x !" , v !# , a !$
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Torque 

§  Torque τ is the rotational analog of force, and results from 
the application of one or more forces. 

§  Torque is relative to a chosen rotation axis. 
§  Torque depends on: 

§  the distance from the rotation axis to the force 
application point. 

§  the magnitude of the force 
§  the orientation of the force relative to the 

displacement     from axis to force application 
point: 

�F

�r

�τ = �r × �F τ = rF sin θ
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Clicker Question 1 

•  The forces in the figures all have the same 
magnitude.  Which force produces zero torque? 

A.   The force in figure (a) 
B.  The force in figure (b) 
C.  The force in figure (c) 
D.  All of the forces produce torque. 
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Rotational Inertia and the Analog of Newton’s Law 

§  Rotational inertia I (or moment of inertia) is the rotational 
analog of mass. 
§  Rotational inertia depends on the 

distribution of mass and its distance 
from the rotation axis, similar to 
center of mass. 

§  Rotational acceleration, torque, 
and rotational inertia combine 
to give the rotational analog 
of Newton’s second law  
 
 
  
(or, more properly with vectors)    
 

τ = Iα

�τ = I�α

F = ma

like �F = m�a
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Connections Between Newton’s Laws 

§  Rotational Newton’s 2nd law: 
§  What is I ? We’ve already defined torque and angular acceleration: 

§  Substituting gives 

§  This looks remarkably like                     when we make the 
association  

τ = Iα

F = ma

τ = rF (when �r, �F are ⊥) a = rα ⇒ α = a/r

rF = I(a/r)

F =

�
I

r2

�
a

�
I

r2

�
= m ⇒ I = mr2



Prof. Satogata / Fall 2012         ODU University Physics 226N/231N 12 

Calculating Rotational Inertia 

§  For a single point mass m, rotational inertia is the product of mass 
with the square of the distance r from the rotation axis: 
 

•  For a system of discrete masses, the 
rotational inertia is the sum of the 
rotational inertias of the individual 
masses: 
 
 

•  For continuous matter, the rotational 
inertia is given by an integral over the 
distribution of matter: 
 
 
 
 
        Similar to center of mass:  
 

I =
�

mir
2
i

I = mr2

I =

�
r2 dm

�rcm =

�
�r dm

M
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Some Rotational Inertias of Simple Objects 
§  We really do need to use calculus to figure out rotational inertias of 

most simple (three-dimensional) geometrical objects 
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•  A hollow ball and a solid ball roll without slipping down an 
inclined plane.  Which ball reaches the bottom of the incline 
first? 
A.  The solid ball reaches the bottom first. 
B.  The hollow ball reaches the bottom first. 
C.  Both balls reach the bottom at the same time. 
D.  We can’t determine this without information about the mass. 

Quick Question 

Isolid =
2

5
MR2 Ihollow =

2

3
MR2
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�

Warning: Calculus 

(Example Rotational Inertia Calculation) 

§  Rotational inertia of a thin rod of length L 
and total mass M about its center axis 
§  Take small slices along the length 

of the rod 
§  Mass of each little slice is 

§  Rotational inertia: 

dm

r

dm =

�
dr

L

�
M

I =

�
r2 dm

I =

� L/2

−L/2
r2

�
dr

L

�
M =

M

L

�
r3

3

� ����
L/2

−L/2

=
M

L

�
L3

24
−
�
−L3

24

��
=

M

L

�
L3

12

�
=

ML2

12
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Parallel Axis Theorem 

§  If we know the rotational inertia Icm about an axis through the 
center of mass of a body, the parallel-axis theorem allows us 
to calculate the rotational inertia I through any parallel axis.  

§  The parallel-axis theorem 
states that 

 where d is the distance from 
the center-of-mass axis to the 
parallel axis and M is the total 
mass of the object. 

I = Icm +Md2
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Example: Hula Hoop Rotational Inertia 
§  What is the rotational inertia of a 

hula hoop of radius r and mass 
M around its edge? 

§  Its center of mass is (obviously) 
at the center of the circle and all 
of its mass is at the same radius 

§  The parallel axis theorem gives 

Interesting… It takes twice as much 
torque to turn a ring around its 
edge as it takes to turn around its 
center. I = Mr2 I =?

Icm = Mr2

r

Iedge = Mr2 +Mr2 = 2Mr2
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Combining Linear and Rotational Motion 
§  We now have the tools to do some 

interesting problems… 
§  Bucket of mass m unrolls from a cylinder 

of mass M and radius R into a well. 
§  What is the bucket’s (linear) acceleration? 

bucket cylinder

Cylinder :
�

τ = Iα

Icylinder =
1

2
MR2

τ = TR sin θ = TR

α = a/R

⇒ TR =

�
1

2
MR2

�
a

R

⇒ T = Ma/2

ŷ

Bucket :
�

F = mg − T = ma

mg −Ma/2 = ma

a =
mg

M/2 +m

Be careful	


about signs!	
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Combining Rotational and Linear Dynamics 
§  In problems involving both linear and rotational motion: 

§  IDENTIFY the objects and forces or torques acting. 
§  DEVELOP your solution with drawings and by writing Newton’s law 

and its rotational analog.  Note physical connections between the 
objects. 

§  EVALUATE to find the solution. 
§  ASSESS to be sure your answer makes sense. 

A bucket of mass m drops 
into a well, its rope 
unrolling from a cylinder of 
mass M and radius R. 
 
What’s its acceleration? 

Free-body diagrams 
for bucket and cylinder 
 
Rope tension    provides 
the connection 

Newton’s law, bucket: 
 
       Fnet = mg–T = ma 
 
Rotational analogy of 
Newton’s law, cylinder: 
 
             RT = Ia/R 
 
Here  
 
Solve the two equations to 
get 

  
a = mg

m+ 1
2 M

  I =
1
2 MR2

T
r
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Rolling Motion 

§  Rolling motion combines translational (linear) motion 
and rotational motion. 

§  The rolling object’s center of mass undergoes translational 
motion. 

§  The object itself rotates about the center of mass. 
§  In true rolling motion, the object moves without slipping and 

its point of contact with the ground is instantaneously at rest. 
§  Then the rotational speed ω and linear speed v are related 

by v = ωR, where R is the object’s radius. 
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Rotational Energy 
§  A rotating object has kinetic energy                     associated 

with its rotational motion alone. 
§  It may also have translational kinetic energy:  

§  In problems involving energy conservation with rotating 
objects, both forms of kinetic energy must be considered. 
§  For rolling objects, the two are related: 

•  The relation depends on the rotational inertia. 

  Krot =
1
2 I! 2

  K trans =
1
2 Mv2.

Example: A solid ball rolls down a hill. How 
fast is it moving at the bottom? Equation for energy conservation 

Energy bar 
graphs 

Solution: 

  
v =

10

7
gh

2 2

2
2 2 2

1 1
2 2
1 1 2 7
2 2 5 10

Mgh Mv I

vMv MR Mv
R

ω= +

⎛ ⎞⎛ ⎞= + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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Summary 

§  Rotational motion in one dimension is exactly analogous to 
linear motion in one dimension. 
§  Linear and angular motion: 

§  Analogies between rotational and linear quantities: 
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Direction of the Angular Velocity Vector 

§  The direction of angular velocity is given by the 
right-hand rule. 
§  Curl the fingers of your right hand in the direction of rotation, and your 

thumb points in the direction of the angular velocity vector   

.ωr
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Direction of the Angular Acceleration 

§  Angular acceleration points in the direction of the change        
in the angular velocity        : 

§  The change can be in the same direction as the angular 
velocity, increasing the angular speed. 

§  The change can be opposite the angular velocity, decreasing 
the angular speed. 

§  Or it can be in an arbitrary direction, changing the direction and 
speed as well. 

ωΔ
r

0
lim
t

d
t dt
ω ω

α
Δ →

Δ
= =

Δ

r rr
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–  Of the two possible directions 
perpendicular to    
the correct direction is given 
by the right-hand rule. 

–  Torque is compactly 
expressed using the vector 
cross product: 

Direction of the Torque Vector 

§  The torque vector is perpendicular to both the force 
vector and the displacement vector from the rotation 
axis to the force application point. 
§  The magnitude of the torque is 
τ = rFsinθ. 

 and ,r F
rr

r Fτ = ×
rr r



Prof. Satogata / Fall 2012         ODU University Physics 226N/231N 26 

The Cross Product 

§  Forming from two vectors      and     a third vector     of 
magnitude C = ABsinθ and direction given by the right-hand 
rule is called the cross product: 

A
r

B
r

C
r

•  Some properties of cross 
products: 

( )
A B B A

A B C A B A C

× = − ×

× + = × + ×

r rr r
r r r r rr r
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–  For the case of a particle in a 
circular path, L = mvr, and     is 
upward, perpendicular to the 
circle. 

–  For sufficiently symmetric 
objects,      is the product of 
rotational inertia and angular 
velocity: 

Angular Momentum 

§  For a single particle, angular momentum    is a vector 
given by the cross product of the displacement vector 
from the rotation axis with the linear momentum of the 
particle: 

L r p= ×
r r r

L
r

L
r

L
r

L Iω=
r r
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§  In terms of angular momentum, the rotational analog of 
Newton’s second law is 
 

§  Therefore a system’s angular momentum changes only if 
there’s a non-zero net torque acting on the system. 

§  If the net torque is zero, then angular momentum is 
conserved. 

•  Changes in rotational inertia then result in changes in 
angular speed: 

Newton’s Law and Angular Momentum 

dL
dt

τ =
r

r

The skater’s angular momentum 
is conserved, so her angular 
speed increases when she 
reduces her rotational inertia. 
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Conservation of Angular Momentum 

§  The spinning wheel initially contains all the system’s 
angular momentum. 

§  When the student turns the wheel upside down, she 
changes the direction of its angular momentum vector. 

§  Student and turntable rotate the other way to keep the 
total angular momentum unchanged. 
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Precession 
§  Precession is a three-dimensional phenomenon involving 

rotational motion. 
§  Precession occurs when a torque acts on a rotating object, changing 

the direction but not the magnitude of its angular momentum vector. 
§  As a result the rotation axis undergoes circular motion: 

Precession of a gyroscope Precession slowly changes 
the direction of Earth’s rotation axis 
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Summary 

§  Angular quantities are vectors whose direction is generally 
associated with the direction of the rotation axis. 
§  Specifically, direction is given by the right-hand rule. 
§  The vector cross product provides a compact representation 

for torque and angular momentum. 

 
 

§  Angular momentum is the rotational analog of linear 
momentum:  

§  In the absence of a net external torque, a system’s angular 
momentum is conserved. 

;  with symmetry, .L r p L Iω= × =
r r rr r
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Clicker Question 1 

•  The forces in the figures all have the same 
magnitude.  Which force produces zero torque? 

A.   The force in figure (a) 
B.  The force in figure (b) 
C.  The force in figure (c) 
D.  All of the forces produce torque. 
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Clicker Question 2 

•  Consider the dumbbell in the figure.  How would its 
rotational inertia change if the rotation axis were at 
the center of the rod?  

 A.  I would increase. 
 B. I would decrease. 
 C. I would remain the same. 
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Clicker Question 3 

•  The figure shows two identical masses m connected by a 
string that passes over a frictionless pulley whose mass is 
not negligible.  One mass rests on a frictionless table while 
the other hangs vertically, as shown.  Compare the force of 
tension in the horizontal and vertical sections of the string. 

A. The tension in the horizontal section is greater. 
B. The tension in the vertical section is greater. 
C. The tensions in the two sections are equal. 
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Clicker Question 5 

•  Two forces of equal magnitude are applied to a door 
at the doorknob. The first force is perpendicular to 
the door, while the second force is applied at an 
angle 20° to the plane of the door. Which force 
produces the greater torque? 

A.   The first force 
B.  The second force 
C.  Both forces produce the same non-zero torque. 
D.  Both forces produce zero torque. 
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Clicker Question 6 

•  A solid sphere subjected to a net torque will 
experience 

A.   an angular acceleration. 
B.  a linear acceleration. 
C.  a constant angular velocity. 
D.  a changing moment of inertia. 
E.  a linear acceleration and an angular acceleration. 
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Clicker Question 8 

•  Two uniform solid spheres have the same radius, 
but one is three times more massive than the other. 
What is the ratio of the larger moment of inertia to 
that of the smaller moment of inertia? 

A.  3 
B.  6 
C.  9 
D.  16 
E.  27 


