Integer resonances

Let’s start with a simplified formalism for the horizontal motion equation:

d?x
102 + QH25U = f(0),

where

e ) = s/R is the azimuthal angle around the ring with

e R being the average radius of the ring,

i. e. we approximate by a circular ring.

e f(0) is some source of perturbations from errors.

Fourier transform the function f and let’s look at the m™ harmonic term:

d*z 5
p7 + Qg x = e cos(mb). (1)

1YY USPAS: Lectures on Resonances
Iq”a Waldo MacKay January, 2013
Il



d*z 5
02 + Qg x = € cos(mb). (1)

Solution to Eq. (1) is of the form

8
I
N
4+
“E%|

with homogeneous part

T = Acos(Qyb) + Bsin(Qyb),

an inhomogeneous part

© [cos(m@) — cos(Qyb)]

Sl
|

Qu2 — m?
x = 0 sin(QH+m9> : sin(QH_m9>.
: _ 6
which reduces to T~ 0 sin(Qyh), for Qg = m.
H

USPAS: Lectures on Resonances

Isurs Waldo MacKay January, 2013
J



Did that go by too fast?

Trigonometric identity:

sin(A + B)sin(A — B)
= (sin A cos B + sin B cos A)(sin A cos B — sin B cos A)

— sin® A cos® B — sin® Bcos? A

1 1 1 1
= 5(1 —|—COSZA)§(1 —cos2B) — 5(1 — COSZA)§(1 + cos 2B)
1

=5 [cos 2A — cos 2B],
having used the double-angle formulae for cos? 6 and sin? 6:

1
cos® ) = 5(1 + cos 20),

1
sin” ) = 5(1 — cos 20).
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Linear growth from integer resonance

X|
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Simpler argument

e On an integer resonance, 1 is a multiple of 27, we expect M =1.

If there is a small path-length error 0/ in one drift section, then the 1-turn matrix

becomes
1 9l 1 0 1 9l
M=y V)0 1) =00 7)

Any particle with x{, # 0 will propagate as

o\ (1 0I\" [z [ xo+nzhdl
z, ) \0 1 xry ) T '

This grows linearly with turn number n.
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Linear coupling resonances

Now we consider a slight amount of H-V coupling with equations:

d*x

02 + Qy’r = ccos(mf)y, and
d2

02 + Qv %y = e cos(mh) x.

e Assume ¢ is very small, and substitute the solutions of the homogeneous
equations for z and y into the corresponding inhomog. terms on the rhs:

a2 T OV = Sew [eos(Qy +m)f + cos(m — Qy)d

102 + Qy’T = € cos(Qy + m)f + cos(m — Q)0

19

and

where ¢, and ¢, contain the respective amplitude information of the homo-

geneous solutions.
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The same arguments as in the previous section lead to the resonance conditions

Qu +Qy =m, and
Qn — Qvl=m,

which classify linear sum and difference resonances, respectively.
The sum and difference resonances behave differently as a little coupling is

added to an ideal uncoupled lattice.
Consider the uncoupled 1-turn transfer matrix:

_ (w0 _
T_(O u2>_

COS (41 + Q1 sin f4q [1 sin g 0 0
—y1 Sin pq COS [41 — Q1 SN g 0 0
0 0 COS (42 + Qg SIN 4o B9 sin Lo
0 0 —Yo SIN U9 COS 42 — (v SIN (42
e Diff. res. condition: sinu; = sin us,

— sin Ws.

e Sum res. condition: sin

il e
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A common source of transverse coupling is a slight roll of quad by angle 6:
Let’s assume that the last element in T is the thin quadrupole:

1 0 0 0

(F o\ [-1/f 1 0 o0
Q‘(o D)_ 0 0 1 0
0 0 1/f 1

Estimate effect of rolled thin quad:

; (M n\ I
T_(m N)_RQR Q-IT

_( Icosf Isinf F O Icosf —Isind D O u O
~ \ —=Isinf Icosf 0 D Isinf TIcosf 0 F 0 u/’
Fast forward skipping a bit of algebra:

T — (Icos? 6 + D? sin? NHu; (I —F?)uycosfsinb
—\ (D? =Dujcosfsing  (Icos?d + F2sin” H)uy

1 0 0 0
B %sinze 1 )™ %cos@sin@ 0 ) "2

- 0 0 1 0
%cos@sin@ 0o/ ™ —%sin29 1) "2
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More algebra ...

2sin° 6 0 0
_ 2
M =y cos™ 0 + f (cos,ulJroqsin,ul 6lsin,u1)’
2 sin” @
N = uycos? 0 — > 0 : O :
f COS Lo + o sin o B9 sin g

0 0 sin 20
m = . . :
COS 41 + 1 sin . B1sin g f

0 0 sin 260
n— : ) .
COS o + Qo sin o (B9 sin Lo f

Recall from our previous discussion of coupling (in CM:§ 6.9):

tr(M + N tr(M — N)\ °
k=A+ A1 = 1 ; )i\/(r( > )> + |m + n|.

For either resonance condition, cos p1; = cos u2, so  tr(uy) = tr(us).
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tr(M —N)  31sinpu; — B2 sin uo
2 B f
51532

f2

sin? 6,

sin”(26) sin p; sin jug,

m + nf =

e Notice that |m + n| # 0 if there is a slight roll of the quadrupole.

e The sign of |m + n| is determined solely by the product sin p; sin us.
For the slightly coupled T’, the argument of the radical is

A, (tr(MQ— N)

2
) + |m + n|

5152
f2

sin?(26) sin® i,

.4
sin”~ 6 . .
= (B1sinpy — Bosin pg)? +

sin”(26) sin p; sin jio

sin* 6 9 . 9 5152
72

. 2
~ T 62, for small 6.
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e As 0 increases away from zero, the degenerate eigenvalues are pushed apart:

1. In the case of a difference resonance, A_ > 0, and the degenerate
A; eigenvalue pairs split apart by moving along the unit circle in the
complex plane. Since the eigenvalues stay on the circle, the motion
remains stable with AT = )\j_l.

2. For a sum resonance, A, < 0, and the A; eigenvalues move away
from the unit circle out into the complex plane resulting in unstable
motion with X% # A7

stable unstable

A_=0

A>O| A<O|

Difference Resonance Sum Resonance
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0

d?x

o2

bl

Higher order (nonlinear) resonances

d? B,

dH;C +Quir =¢ % x cos(m#), and
d?y 0B,

0z T Qviy=c¢ En y cos(mb)

1 o
_Re< Zn — 1b,)(z + iy)" ) Z nb, ( (an )xn—1—2jy2j.

Start with solutions,

r = A;cos(Qyuf), and y = Ascos(Qy0),

+ Qy°r = enb,, cos(mb) Z (n; 1>An 27 A cos™ " (Qyh) cos™ (Qy0).

=0 ~
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Lots of algebra

cos(mB) cos? (Qyb) cos?(Q+0)

= 9~ (+0 Z Z (i) (‘j) cos{[(p — 2k)Qy + (g — 20)Qy — m]6}.

k=0 [=0

For the z-equation, p = n — 24, and ¢ = 27, giving resonances when
1 —2(j + k)] Qy + 2( — NQy = =m.
For the y-equation, p = n—1—2j, and ¢ = 25+1, giving the additional conditions

n—1—2(j + k)]Qy + [1 £ 1+2(j - D]Qy = £m.
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Results

e A normal quadrupole error excites the half-integer resonances:

2Qg = tm, and 2Qy = tm.

e Normal octopole:

+4Qy = m,
+40Q), = m,

+2Qy = m, and
+20Qy £ 2Qy = m.

Notice that the resonances driven by the normal quadrupole are also driven
by the octopole.

e Normal sextupole:
+3Qy = m,
+Qy =m, and
+Qy £ 2Qy = m.
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e Normal decapoles:

+5Qy = m,

+3Qy £ 20, = m,

+3Qy = m,

+Qy £4Qy = m,
+Qy £2Qy =m, and

+Qy = m.
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Lines from normal multipoles

I,+1 = T ~ I>+1 B

I 7 N D N I ////"7// \V‘// ! ! y ~
2 2
R |, +1 I, |, +1

a) A tune plot showing the resonance lines driven by a normal quadrupole
perturbation (heavy lines), and a normal octopole perturbation (all lines).
I and I, are arbitrary integers.

b) A tune plot showing the resonance lines driven by a normal sextupole (heavy
lines), and a normal decapole (heavy and dashed lines).

e Typically: Positive slopes (diff res) OK; Negative slopes (sum res) bad.
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Lines from skew multipoles

2

1, +1 |, +1

a) Skew quad lines (solid) and skew octopole lines (bold and dashed).

Skew sextupole (bold) and skew decapole (bold and dashed) lines.

e Again: Positive slopes (diff res) OK; Negative slopes (sum res) bad.
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Periodicity

Order=6 Periodicity=1

Order=6 Periodicity=3

: ders: 123456
29.5 Orders: 223455 29,5 - preers 1800,
Qy Qy
29.0 ‘ 2905
28.0 Oy 285 280 Qy

bl .
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