
More formal symplectic integration

In the neighborhood of a reference trajectory ~X = X̂(s), we can expand the

equation of motion about X̂(s). Equation of the reference trajectory becomes:

dX̂i

ds
=

6∑

j=1

Sij
∂H

∂Xj
(X̂), or in matrix notation:

dX̂

ds
= S∇6H.

Expanding both sides in Taylor series yields

d

ds
(X̂i +∆Xi) =

6∑

j=1

Sij
∂H

∂Xj
(X̂+∆X)

=
6∑

j=1

Sij

[
∂H

∂Xj
(X̂) +

6∑

k=1

∂2H

∂Xj∂Xk
(X̂)∆Xk + · · ·

]
.

d∆Xi

ds
=

6∑

j=1

6∑

k=1

Sij
∂2H

∂Xj∂Xk
(X̂)∆Xk + · · · .
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The matrix of second derivatives Cjk =
∂2H

∂Xj∂Xk
(X̂) = Ckj .

In matrix notation, our 1st order equation is

d∆X̂

ds
= SC∆X̂. (Type of equation Sophus Lie invented his algebra for.)

So for an infinitesimal step (from sν to sν+1), we have

∆X̂ν+1 = ∆X̂ν +∆X̂ν SC ds = (I+G ds)∆X̂ν .

For the case where C is constant, the integration gives

M(s) = lim
n→∞

(
I+ SC

s

n

)n

= eSC s.

If C is not constant then we must have something more like

M(s) = lim
ds→0

eSC(s−ds)ds · · · eSC(2ds)dseSC(ds)dseSC(0)ds.

How do we approximate this?


 2�

USPAS: Lectures on Hamiltonian Dynamics
Waldo MacKay January, 2013



A general 2n×2n-symmetric matrix has

(2n)2 − 2n

2
+ 2n = (2n+ 1)n

degrees of freedom. Since a n×n-symplectic matrix can
be written as the exponentiation of SC, the symplectic
matrices also have (2n+ 1)n free parameters.

n 2n d.o.f.
1 2 3
2 4 10
3 6 21
4 8 36

For example any 4×4 symmetric real matrix can be written as

S =

10∑

j=1

αjcj ,

where the αj are real coefficients and the 10 cj form a basis set of the 4×4
symmetric matrices.
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For the 4×4 symmetric matrices, one possible basis is

cj :




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1


 ,




0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 −1


 ,




1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0


 ,




1 0 0 0
0 0 0 0
0 0 −1 0
0 0 0 0


 ,




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 ,




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 ,




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0


 ,




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 ,




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 ,




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0


 , in the order of j from 1 to 10.

The ten products Gj = Scj form a set of generators 4×4 symplectic matrices
which may be written in the form

exp




10∑

j=1

Gjαj


 .
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The product of two exponentials of different matrices can be combined into
a single exponential of a third matrix:

eXeY = eZ.

If [X,Y] = 0, then we have simply

e(X+Y) = eX eY.

However if the matrices X and Y do not commute, then Z can be calculated
from the the Baker-Campbell-Hausdorff (BCH) formula:

Z = log
(
eXeY

)

= X+Y +
1

2
[X,Y] +

1

12
([X,X,Y] + [Y,Y,X]) +

1

24
[X,Y,Y,X] +O(5),

where the extended commutator notation indicates multiple commutators nested
to the right:

[a, b, c] = [a, [b, c]], [a, b, c, d] = [a, [b, [c, d]]].
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The Zassenhaus formula (sort of like the reverse process of the BCH for-
mula) splits a single exponentiation of the sum of two matrices A and B into a
product of two exponentials of the two matrices times higher order exponentials
of commutators:

e(A+B)h = eAh eBh e−[A,B]h2/2 e(2[B,A,B]+[A,A,B])h3/6 eO(h4)··· · · · ,

where the parameter h is a small integration step.

To second order in h, this can be written as (see Problem 3–10)

e(A+B)h = eAh/2eBheAh/2 +O(h3). (ZH2)

To second order an integration step eSCh can be expanded into

exp




n∑

j=1

αjGjh


 =




n∏

j=1

exp(Gjh/2)







1∏

j=n

exp(Gjh/2)


+O(h3),

by successive applications of Eq. (ZH2).
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If we partition the sum in exp
(∑10

j=1 Gjαj

)
into

A = α1G1, and B =
10∑

n=2

αnGn,

then the factor

eAh/2 =




1 α1h/2 0 0
0 1 0 0
0 0 1 α1h/2
0 0 0 1


+O(h3),

produces a drift matrix of length α1h/2 up to second order in h,
and the factor eBh corresponds to a thin element kick.

The end result is a thin kick sandwiched between to drifts.

• Drift-Kick codes are symplectic. (e. g. Teapot by Talman and Schachinger)
• Kicks can even be of higher order (nonlinear).

• Nonlinear kicks with drifts are a standard way to treat sextupoles, octopoles,
etc. even in codes with thick lens elements.
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“Time-symmetric” integrators

If we apply the BCH formula twice to the time-symmetric* product

eW = eXh eYh eXh,

then it must be that

W = (2X+Y)h+
1

6
([Y,Y,X]− [X,X,Y])h3 +O(h5).

If an integrator formula I(h) = eg1h+g2h
2+g3h

3+···, with matrices gj is “time
reversible”, then we must have I(h)I(−h) = 1. The BCH formula gives to
lowest order:

I(h)I(−h) = e−g1h/2eg2h
2

e−g1h/2 eg1h/2eg2h
2

eg1h/2 +O(h3) = 1.

eg1h/2e−g1h/2 = 1 = eg2h
2

+O(h3).

So we must have g2 = 0.

* This symmetry is typically referred to as time-symmetric even when the
integration variable may be the s-coordinate rather than time, since s is the
independent time-like parameter of the Hamiltonian.
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Repeating this with g2 = 0, now the lowest term would require that g4 = 0.

By induction, all the even powers of h in I(h) vanish: g2j = 0.

I. e. log(I(h)) must be an odd function of h, if I(h) is time-reversible.

Higher order integrators may be constructed from the second order integra-
tion function,

I2(h) = eAh/2 eBh eAh/2 = eg1h+g3h
3+···.

Yoshida constructed a 4th-order integrator from a time-symmetric product of
second order integrators:

I4(h) = I2(ah) I2(bh) I2(ah),

where a and b are parameters to be determined.

I4(h) = e(2a+b)g1h+(2a3+b3)g3h
3+···,= e(A+B)h+O(h5).

To 4th-order this requires that 1 = 2a+ b, and 0 = 2a3 + b3.

a =
1

2− 21/3
, and b = −

21/3

2− 21/3
. (Note typo in book on p. 61.)
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Groups

A group is a set G with a binary operation on its elements having the properties:

i. for any two elements a, b ∈ G, then ab ∈ G;
ii. if a, b, c ∈ G, then a(bc) = (ab)c;
iii. there is a unique element e ∈ G such that ea = a = ae for any element

a ∈ G;
iv. for each a ∈ G there is an element a−1 ∈ G such that a−1a = e = aa−1.

Familiar examples:
1. the integers Z with the addition operator.
2. general linear group Gl(n,R) of n×n-square real matrices with nozero de-

terminant.
3. special linear group Sl(n,R) of n×n-square real matrices with unit determi-

nant.
4. orthogonal group of rotations O(n,R) (Includes reflections.)
5. special unitary group SU(n,C).
6. symplectic group Sp(2n,R). (Representation depends on choice of S.)
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Lie algebras

A Lie algebra is a vector space over a field (for our case either the real numbers
R or complex numbers C) with an additional binary operation [·, ·] called the
Lie bracket or commutator. The Lie bracket operator satisfies the following
properties for any elements x, y, z in the Lie algebra and a, b in the field:

1. Bilinearity:
[ax+ by, z] = a[x, z] + b[y, z], (correction to “muddlement” in §3.8.1)
[z, ax+ by] = a[z, x] + b[z, y];

2. Anticommutativity:
[x, y] = −[y, x];

3. Jacobi Identity:
[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0,

with 0 here being the identity element in the vector space.
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Lie group

A Lie group is basically a group which is also a differentiable manifold.

For an example consider the 6-d surface defined by a conserved Hamiltonian:

H(x, x′, y, y′, z, δ; s) = −
qAs

p0
−

x

ρ
−

xδ

ρ
+

1

2
(w2

x + w2
y) + · · · = a constant.

Given a particle with initial position and momentum lying on this surface, the
particle’s trajectory will remain on this surface.

As we have seen, the transport matrices are elements of the group Sp(6,R).
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Quadratic Lie Groups

A quadratic Lie group Gc defined by a group representation of n×n nonsingular
(i. e., the inverse must exist) complex matrices:

Gc = {M ∈ GLn(C) : MJM† = J},

where GLn(C) is general linear group of complex n×n matrices, and where J is
any particular matrix in GLn(C).

Note that the dagger indicates the Hermitian conjugate: M† = (M∗)T,
i. e. the transpose of the complex conjugate of the matrix.

The corresponding Lie algebra can be represented by

gc = {A ∈ C
n×n : AJ+ JA† = 0},

where C
n×n is the set of all n×n complex matrices.
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If we consider only real matrices then

Gr = {M ∈ GLn(R) : MJMT = J}, and

gr = {A ∈ R
n×n : AJ+ JAT = 0},

where GLn(R) is the general linear group of n×n nonsingular real matrices and
J is a particular matrix in GLn(R).

Some examples other than the symplectic group Sp(2n,R):

• The unitary group: U(n) with J = I.
• The special unitary group restricted to have |M| = 1.

• The orthogonal group: O(n) ∈ U(n) restricted to real matrices with J = I.
• The special orthogonal group restricted to have |M| = 1.

• The Lorentz group SO(3, 1,R) with J =




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


 .
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• Sp(2n,RS) describes the symplectic geometry of trajectories flowing on the
manifold’s surface.

• The corresponding Lie algebra sp(2n,R;S) describes the geometry of a plane
tangent to the surface at a point.
• It approximates a linear neighborhood of the surface around the point.

Four integration steps for a trajectory with four
integration steps in tangent planes and the re-
sulting integrated trajectory projected back onto
the manifold of the Hamiltonian by a lift func-
tion Φ.

Lift function:

Φ :sp(2n,R;S) → Sp(2n,R)

Φ−1 :Sp(2n,R) → sp(2n,R;S)

The obvious choice for Φ is an
exponential map.
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Cayley transforms

Cayley showed that an orthogonal matrix Q could be factored as

Q = (I−A)(I+A)−1,

where A is antisymmetric A = −AT.

A = (I−Q)(I+Q)−1.

Orthogonalization of an almost orthogonal matrix

Suppose we have an almost (but not quite) orthogonal matrix Q0.

1. Calculate A0 = (I−Q0)(I+Q0)
−1. A0 will not be quite antisymmetric.

2. Calculate A1 = (A0 −AT
0 )/2. Now AT

1 = −A1.

3. Calculate Q1 = (I−A1)(I+A1)
−1. Q1 is orthogonal and close to Q0.
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Healy’s symplectification algorithm

A symplectic matrix M may be written in the form*

M = (I+ SW)(I− SW)−1,

if and only if W is a symmetric matrix.

Inverse transform: W = S(I+M)−1(I−M).

The symplectification algorithm

If M0 is almost symplectic, then calculate

1. W0 = S(I+M0)
−1(I−M0),

2. W1 = (W0 +WT
0 )/2,

3. M1 = (I+ SW1)(I− SW1)
−1.

M1 will be an approximation of M0 which is now symplectic.

* Provided that |I− SW| 6= 0 and |I+M| 6= 0.
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