

Jefferson Lab

University Physics 227N/232N Old Dominion University

Review and Starting Electrostatics

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-ODU

Monday, January 13 2014 Happy Birthday to Wilhelm Wien, Orlando Bloom, Patrick Dempsey, Julia Louis-Dreyfus, and Trevor Rabin!

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N

Review: SCALE-UP

- Observation: you're not seated in a lecture-style hall
 - Lectures are boring (yawn)
 - Lectures let you (the folks who are learning) become passive
 - Lectures isolate you from your peers
- In this class, we'll do it a bit differently
 - Me: less lecturer more moderator, coach, mentor
 - You: regular, active, group participants in class activities
- So what do we do?

- (Some) Lectures: Setting up the day's topics, and summaries
- **Observations:** Related to the current class topic
- Ponderables: Conceptual or calculating group exercises
- Tangibles: Try it out and see group exercises
- (And, most importantly, Preparation outside of class)

Preparation Outside of Class

- Me: Post reading, (some) of the class slides, and Mastering Physics homework
 - By evening after previous class

You

Jefferson Lab

- Look through the reading before class
 - You can't engage a topic you haven't at least briefly thought about
- Do the homework
 - ~half review, half new
 - Keep notebook (see syllabus)
- ~Maybe 6-12 hours/week

3

Homework: Brain Exercise

Do the homework.

- You won't do well if you don't. 'Nuff said.
- Keep a homework notebook: it will be checked later in the semester
- Work through details of problems; review for quizzes/exams
- Homework for introductory electrostatics is up now
 - Due Thursday evening at midnight
 - Friday's quiz will be based on that content (chapter 20)

Class Website and Syllabus

http://www.toddsatogata.net/2014-ODU

ODU University Physics PHYS 227N/232N

CRNs 20161/24396 and lab 22509/24397 Dr. Todd Satogata / <u>satogata@jlab.org</u> or <u>tsatogat@odu.edu</u> TA: Fred Miller (<u>fmill005@odu.edu</u>) Spring Semester, Jan 13-Apr 28 2014

Class Information

Jefferson Lab

- <u>Class Syllabus and Information</u> [last updated 27 Dec 2013]
- Textbook: Essential University Physics (2nd Ed), Richard Wolfson (strongly recommended but not required)
- Homework: Weekly, online through <u>Mastering Physics</u> (required!)
 Some instructions for using MasteringPhysics are <u>located here</u>.
- o Class: MW 11:00-12:50, F 12:00-12:50 in OOCNPS 142-144 (SCALE-UP Classroom)
- (Todd's previous 226N/231N class page is <u>here</u>)
- Class Class Schedule and Materials [last updated 6 Jan 2014] **Materials** Ouiz/Test Chapter Topic and other notes Date Slides [pdf] Introduction, Review, Electricity and magnetism concepts [-- Mb] M Jan 13 ---Reading is the class syllabus. Electric charge, Coulomb's Law W Jan 15 20 [-- Mb] Electric Fields F Jan 17 20 [-- Mb] Ouiz 1 M Jan 20 Martin Luther King Day, No class --W Jan 22 20 Dipole Fields, Continuous Media [-- Mb] F Jan 24 Electric Flux, Gauss's Law Quiz 2 21 [-- Mb]

5

Syllabus

Mastering

Physics

Class Grading

Read the syllabus:

Course Grades The final grade is calculated on an absolute scale. There are 100 points possible for this course:

- 45 points Three Midterm Exams (15 each)
- 30 points Final Exam (comprehensive)
- 10 points Weekly Quizzes
- 10 points Homework Assignments (including journal)
- 05 points Laboratory

The grading policy is non-competitive and fairly lenient, but there is no curve. I can only assign a letter grade at the end of the term.

- There may also be some extra credit opportunities through the course of the semester
- Note that I do **not** drop any low grades
 - Every grade counts!

"Tangible" (5 minutes)

Who are you? Why are you here? (5 minutes)

- Introduce yourself to those around you and say hi!
- Determine if you share a birthday with anyone else in class.
 - Use boards and markers in creative ways if you like.

Tangible

- Who are you? Why are you here? (boy, that was quick)
 - Introduce yourself to those around you and say hi!

- Determine if you share a birthday with anyone else in class.
 - There is over a 99% chance that we have at least one pair!

Physics!

- Physics is a quantitative, predictive science of...
 - physical material and its motion through space and time
 - related abstract concepts such as energy and force
 - based on a fundamental belief in "rules" of objective reality
- Qualitative and predictive: numerical generality
 - Use mathematical models (we'll use a fair bit of calculus)
 - Test these models vs observation and experiment
 - "What happens if...?" becomes "Why does that happen?"
- Everything in physics is related to observations

- These provide "data points" to test against vs models/intuition
- In case of disagreement, either experiment or theory is wrong!
 - But reality is always right and does not care about your theory
- Quantitative observations have precision, accuracy, and units

Review: SI and Metric Units

- The modern, scientific and engineering form of the metric system
 - You should get in the habit of writing units for all physical quantities!
 - Length: meter [m]
 - Time: second [s]
 - Mass: kilogram [kg]
 - Electric current: ampere [A]
 - Charge: Coulomb [C]
 - Capacitance: Farad [F]
 - Voltage: Volt [V]

lefferson Lab

- Magnetic flux density: Tesla [T]
- Resistance: Ohm [Ω]

We'll deal with these for most of this semester

1 cm is about 2.54 inches 1 m is about 3.281 feet 1 km is about 0.6214 miles

(100 m)² is about 2.471 acres

 $(10 \text{ cm})^3 = 1$ liter, about 0.264 gal

1 kg is about 2.205 lbs 1 g is about 0.0353 oz

```
1 year is about \pix10<sup>7</sup> s
1 Hz is 1 s<sup>-1</sup>
```

Google and Wolfram Alpha are both very useful!

Review: Converting Units

- Units matter! Measures of physical quantities must always have the correct units so we can compare them properly.
 - And calculate other quantities properly with them.
- Conversion tables or Google can be used to convert:
 - Example: What is the length of the Olympic 200 meter dash in feet?

$$(200 \text{ m}) \left(\frac{3.281 \text{ feet}}{1 \text{ m}} \right) = 656.2 \text{ feet}$$
• Example: What is 60 mph in feet/s? in m/s?

$$(60 \text{ miles/hr}) \left(\frac{5288 \text{ feet}}{1 \text{ mile}} \right) \left(\frac{1 \text{ hr}}{3600 \text{ s}} \right) = \left(\frac{5288}{60} \right) \text{ ft/s} = 88 \text{ ft/s}$$

$$(60 \text{ miles/hr}) \left(\frac{5288 \text{ feet}}{1 \text{ mile}} \right) \left(\frac{1 \text{ hr}}{3600 \text{ s}} \right) \left(\frac{1 \text{ m}}{3.281 \text{ feet}} \right) = 27 \text{ m/s}$$
• Units are an excellent double-check to your physics calculations.
efferson Lab

Review: Significant Figures

- The answer to the last example is 27 m/s, not 26.86 m/s or 26.8617 m/s or 2.68617x10³ (units?) as a calculator might show.
 - That's because the given quantity, 60 mph, has only two significant figures.
 - That means we know that the actual value is closer to 60 mph than to 61 mph or 59 mph. (This matters when, say, you're speeding!)
 - If we had been given 60.00 mph, we would know that the value is closer to 60.00 mph than to 60.01 mph or 59.99 mph.
 - In that case, the number given has four significant figures.

- Significant figures tell how precisely we know the values of physical quantities based on our observations (measurements).
 - Calculations can't increase that precision, so it's important to report the results of calculations with the correct number of significant figures.

Review: Vector Components

- Electricity and magnetism are rather vector heavy
 - Relationships of charged and moving objects in 3D space
 - You should remember/review vector decomposition and unit vectors

$$A = A_x i + A_y j$$
$$\vec{i} = A \sin \theta \ \hat{i} + A \cos \theta \ \hat{j}$$

$$\vec{A} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix}$$

Review: Vector Algebra

Adding and subtracting vectors:

$$\vec{A} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \qquad \vec{B} = \begin{pmatrix} B_x \\ B_y \\ B_z \end{pmatrix} \qquad \vec{A} + \vec{B} = \begin{pmatrix} A_x + B_x \\ A_y + B_y \\ A_z + B_z \end{pmatrix}$$

Multiplying vectors by a scaler

$$\vec{A} = \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} \qquad n\vec{A} = \begin{pmatrix} nA_x \\ nA_y \\ nA_z \end{pmatrix}$$

- Multiplying vectors by a vector: dot product and cross product
 - We'll review these when we need them...
 - We'll even use differential calculus versions of these with ∇

Review of Kinematics

Follows from a few ideas

efferson <u>Lab</u>

- Position, velocity, and acceleration are **vectors**, $\vec{v} = \frac{d\vec{x}}{dt}$ $\vec{a} = \frac{d\vec{v}}{dt}$
- We can describe all motion with constant acceleration (including zero)
- For each problem, draw a picture (including labeling axes, vectors, distances, and angles)
- Figure out what's known and unknown
- Break vectors down into components
- Then in each dimension of motion (e.g. horizontal/vertical) we have two basic equations to describe the motion in time

$$x - x_0 = v_0 t + \frac{1}{2}at^2$$
 $v = v_0 + at$

 For projectile motion the horizontal acceleration is zero (which makes the equations easier) and the vertical acceleration is the acceleration of gravity (where we need to use the full equations)

Review: Kinematics Example

• Example:

Jefferson Lab

 With what speed do I need to throw a ball vertically upward so that it barely hits the ceiling 2.0m above my hand?

$$v_y = v_{y0} + at$$
$$y - y_0 = v_{y0}t + \frac{1}{2}at^2$$
$$a = -9.8 \text{ m/s}^2$$

Review: Use the Force, Newt!

Newton's three "laws" of motion (1687)

Newton's First Law

A body in uniform motion remains in uniform motion, and a body at rest remains at rest, unless acted on by a nonzero net force.

Newton's Second Law

• This was basically $ec{F}_{
m net} = mec{a}$

Newton's Third Law

Jefferson Lab

If object A exerts a force on object B, then object B exerts an oppositely directed force of equal magnitude on A.

Newton's Second Law: Example

- A 740-kg elevator accelerates upward at 1.1 m/s², pulled by a cable of negligible mass. Find the tension force in the cable.
 - The object of interest is the elevator; the forces are gravity and the cable tension.
 - Newton's second law reads

$$\vec{F}_{\rm net} = \vec{T} + \vec{F}_g = m\vec{a}$$

 In a coordinate system with y-axis upward, Newton's Second Law is

$$T_{\rm y} + F_{\rm gy} = m a_{\rm y} \label{eq:Ty}$$
 Solving gives

lefferson Lab

 $T_{\mathrm{y}} = m(a_{\mathrm{y}}+g) = 8.1 \;\mathrm{kN}$

- Does this make sense? Let's look at some cases:
 - When a = 0, T = mg and the cable tension balances gravity.
 - When T = 0, a = -g, and the elevator falls freely.

Review: Uniform Circular Motion

 When an object moves in a circular path of radius r at constant speed v, its acceleration has magnitude

$$a = \frac{v^2}{r} \qquad F = ma = \frac{mv^2}{r}$$

- The acceleration vector points toward the center of the circle.
- Since the direction of the acceleration keeps changing, this is not constant acceleration.
 The velocities
- Constant acceleration in two dimensions implies a parabolic trajectory, not a circular one.

New Stuff! In Chapter 20, You'll Learn

- How matter and many of its interactions are fundamentally electrical
- About electric charge as a fundamental property of matter
- To describe the electric force between charges
- The concept of electric field
 - How to calculate the fields of discrete and continuous charge distributions
- How charges respond to electric fields

The Standard Model on One Convenient Slide

- All matter is made up of leptons and quarks
- All matter interacts via four forces (in order of range):
 - Gravity

Jefferson Lab

- Electromagnetism
- (Weak Nuclear Force)
- (Strong Nuclear Force)

Prof. Satogata / Spring 2014

Leptons spin = 1/2			Quarks spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge	Flavor	Approx. Mass GeV/c ²	Electric charge
Ve electron	<1×10 ⁻⁸	0	U up	0.003	2/3
e electron	0.000511	-1	d down	0.006	-1/3
$ u_{\mu}^{\text{muon}}$ neutrino	<0.0002	0	C charm	1.3	2/3
μ muon	0.106	-1	S strange	0.1	-1/3
$v_{ au}^{ ext{ tau}}_{ ext{ neutrino}}$	<0.02	0	t top	175	2/3
au tau	1.7771	-1	b bottom	4.3	-1/3

ODU University Physics 227N/232N

21

Electric Charge

- Electric charge is a fundamental property of matter.
 - Many particles, including the electron and proton, carry electric charge.
 - Charge comes in two varieties, positive and negative.
 - Most charged particles carry exactly one elementary charge, e, either positive or negative.
 - The proton carries exactly +e, the electron exactly -e.
 - The quarks, which make up protons, neutrons, and other subatomic particles, carry $\pm 1/3$ e or $\pm 2/3$ e. But they're never observed in isolation.
 - The charge in a closed system is **conserved**
 - The algebraic sum of charges remains unchanged.
 - This is true even if new particles are created or destroyed.
 - The SI unit of charge is the coulomb (C), equal to approximately 6.25 × 10¹⁸ elementary charges.
 - Thus e is approximately 1.602×10^{-19} C.

Jefferson Lab

Charges interact with electromagnetic radiation (light, radio, ...)

Coulomb's Law and the Electric Force

- Like charges repel, and opposite charges attract, with a force that depends on
 - The product of the two charges

- The inverse square of the distance between them
- Mathematically, the electric force is described by Coulomb's law (much like the force of gravity):

Question 1

- Two charged particles attract each other with a force *F*. If the charges of both particles are doubled, and the separation between them is also doubled, the force between them will be
 - A. *F*/8.
 B. *F*/2.
 C. *F*.
 D. 2*F*.
 - E. 8*F.*

Recall
$$\vec{F}_{12} = \frac{kq_1q_2}{r^2} \hat{r}$$

Question 1: Answer

Two charged particles attract each other with a force F. If the charges of both particles are doubled, and the separation between them is also doubled, the force between them will be

$$F = \frac{kq_1q_2}{r^2} \qquad F_{\text{new}} = \frac{k(2 q_1)(2 q_2)}{(2r)^2} = \frac{4}{4} \frac{kq_1q_2}{r^2} = F$$
Solution Formula Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 25

Question 2:

What is the force (magnitude and direction; force is a vector!) on a proton at the origin, from a charge of -10e located at the position (1cm, 1cm)?

 Bonus: If both particles start at rest, the proton is free to move, and the -10 charge is fixed, how long does it take the proton to hit the other charge?

> Kinematics with variable acceleration: calculus! Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 26

Question 2: Answer

The Superposition Principle

The electric force obeys the superposition principle.

- That means the force two charges exert on a third force is just the vector sum of the forces from the two charges, each treated without regard to the other charge.
- The superposition principle makes it mathematically straightforward to calculate the electric forces exerted by distributions of electric charge.
 - The net electric force is the sum of the individual forces.

The Electric Field

The electric field at a point in space is the force per unit charge that a charge q placed at that point would experience:

$$\vec{E} = \frac{\vec{F}}{q}$$

- The force on a charge q in an electric field \vec{E} is $\vec{F} = q\vec{E}$
- The electric field is analogous to the gravitational field, which gives the force
 Der unit mass.

Jefferson Lab

a mass *m* placed here would experience a gravitational force $m\vec{g}$.

Right at this point the gravitational field

is described by the vector \vec{g} . That means

The gravitational field is a continuous entity, so there are field vectors everywhere. We just can't draw them all. (a) © 2012 Pearson Education, Inc.

Right at this point the electric field is described by the vector \vec{E}_1 . That means a point charge *q* placed here would experience an electric force $q\vec{E}_1$.

The electric field is a continuous entity, so there are field vectors everywhere. We just can't draw them all.

(b)

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 29

DC Accelerating Gaps: Cockcroft-Walton

- Accelerates ions through successive electrostatic voltages
 - First to get protons to >MeV
 - Continuous HV applied through intermediate electrodes
 - Rectifier-multipliers (voltage dividers)
 - Limited by HV sparking/breakdown
 - FNAL still uses a 750 kV C-W
- Also example of early ion source

- H gas ionized with HV current
- Provides high current DC beam

DC Accelerating Gaps: Van de Graaff

- How to increase voltage?
 - R.J. Van de Graaff: charge transport
 - Electrode (1) sprays HV charge onto insulated belt
 - Carried up to spherical Faraday cage
 - Removed by second electrode and distributed over sphere
- Limited by discharge breakdown
 - ~2MV in air
 - Up to 20+ MV in SF₆!
 - Ancestors of Pelletrons (chains)/ Laddertrons (stripes)

Van de Graaff Popularity

Fields of Point Charges and Charge Distributions

• The field of a point charge is radial, outward for a positive charge and inward for a negative charge.

etterson Lab

$$\vec{E}_{\text{point charge}} = \frac{kq}{r^2} \hat{r}$$

 The superposition principle shows that the field due to a charge distribution is the vector sum of the fields of the individual charges.

$$\vec{E}_{\text{total}} = \sum_{i} \vec{E}_{i} = \sum_{i} \frac{kq_{i}}{r_{i}^{2}} \hat{r}_{i}$$

The Dipole: an Important Charge Distribution

- An electric dipole consists of two point charges of equal magnitude but opposite signs, held a short distance apart.
 - The dipole is electrically neutral, but the separation of its charges results in an electric field.
 - Many charge distributions, especially molecules, behave like electric dipoles.
 - The product of the charge and separation is the dipole moment:
 p = *qd*.
 - Far from the dipole, its electric field falls off as the inverse cube of the distance.

