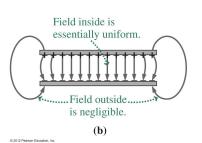


Jefferson Lab

Conducting plates with area *A* are a small distance *d* apart.

University Physics 227N/232N

Capacitors, Field Energy, Current and Ohm's Law



(a)

Lab deferred to Fri Feb 28 QUIZ this Friday! (Feb 21) Fred lectures Monday! (Feb 24)

Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org

http://www.toddsatogata.net/2014-ODU

Wednesday, February 19 2014

Happy Birthday to Victoria Justice, Immortal Technique, Benicio del Toro, Copernicus, and David Gross (2004 Nobel Prize)

Prof. Satogata / Spring 2014 ODU University Physics 227N/232N

Capacitor Review

- A capacitor is a pair of conductors, insulated from each other, and used to store charge and energy.
 - The two conductors are given equal but opposite charges $\pm Q$
 - Definition of capacitance: $C \equiv Q/V$ Q = CV
 - Capacitance is a physical property of the capacitor.
- A parallel plate capacitor has two parallel conductors of equal area A separated by distance d, possibly a dielectric

$$C_{\text{parallel plate}} = \kappa \frac{A}{4\pi kd} = \kappa C_0$$
 $C_0 = \frac{A}{4\pi kd}$ $\kappa > = 1$

- The dielectric constant κ for a vacuum is 1
- Energy stored in a capacitor

efferson Lab

 $U_{\text{stored in capacitor}} = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C}$

Capacitor Example

$$C \equiv Q/V \qquad Q = CV$$

$$L_2 = 1.0 \text{ cm}$$

$$L_1 = 1.5 \text{ cm}$$

$$d = 1.0 \ \mu\text{m}$$

$$C_{\text{parallel plates}} = \frac{\epsilon_0}{c}$$

- A (vacuum) capacitor is made of two (parallel) plates of sides
 1.5 cm and 1.0 cm separated by 1.0 μm.
 - What is its capacitance?

Jefferson Lab

If it is rated at 1 kV, how much charge can it store?

$$C = \frac{A}{4\pi kd} = \frac{1.5 \times 10^{-4} \text{ m}^2}{4\pi (9 \times 10^9 \text{ N m}^2/\text{C}^2)(10^{-6} \text{ m})} = \boxed{1.3 \text{ nF} = C}$$

$$Q = CV = (1.3 \times 10^{-9} \text{ F})(10^3 \text{ V}) = 1.3 \,\mu\text{C} = Q$$

- If we wanted to raise the capacitance, we would need to increase the surface area A or decrease the separation d
 - Or change the material between the plates
 Prof. Satogata / Spring 2014 ODU University Physics 227N/232N

3

 $4\pi k a$

Dielectric Constants

- The dielectric constant, κ, is a property of the dielectric material that gives the reduction in field and thus the increase in capacitance.
 - For a parallel-plate capacitor with a dielectric between its plates, the capacitance is

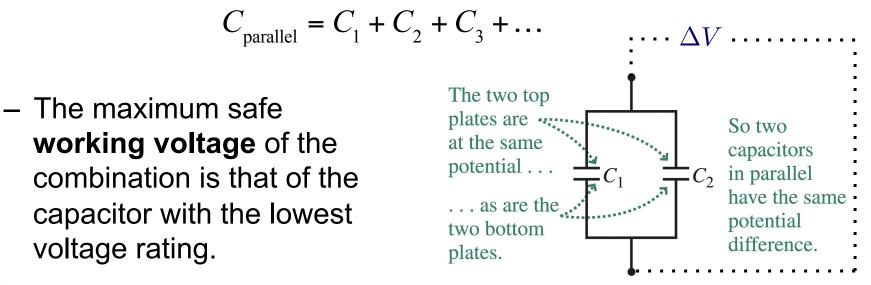
$$C = \kappa \frac{\epsilon_0 A}{d} = \kappa C_0 \qquad C_0 = \frac{\epsilon_0 A}{d} \qquad \kappa \ge 1$$

Table 23.1 Properties of Some Common Dielectrics

Dielectric Material	Dielectric Constant	Breakdown Field (MV/m)	
Air	1.0006	3	
Aluminum oxide	8.4	670	
Glass (Pyrex)	5.6	14	
Paper	3.5	14	Titanium dioxide κ =100!
Plexiglas	3.4	40	
Polyethylene	2.3	50	But breakdown fields
Polystyrene	2.6	25	Only up to about 50 MV/m
Quartz	3.8	8	
Tantalum oxide	26	500	
Teflon	2.1	60	
Water	80	depends on time and put	rity

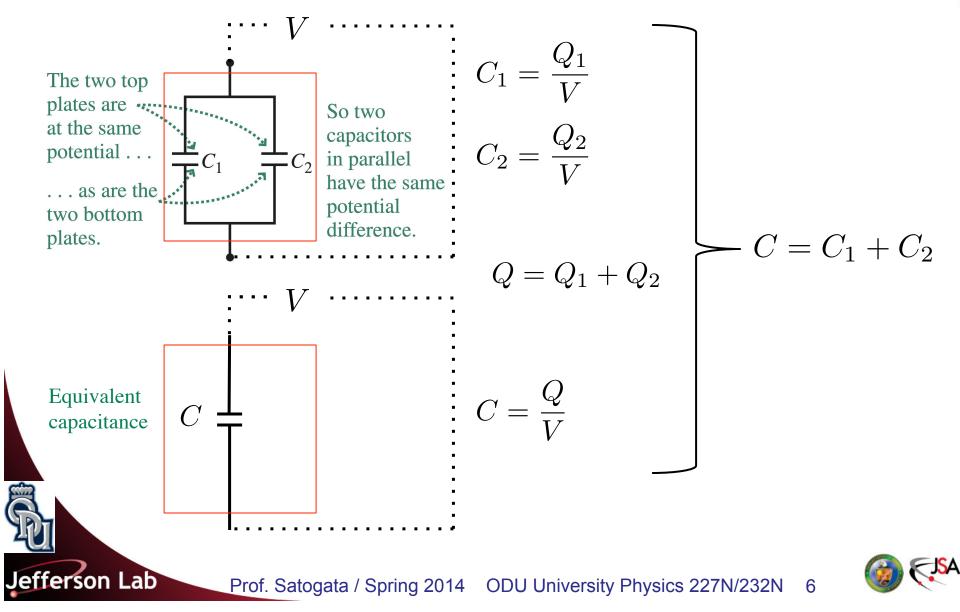
Connecting Capacitors in Parallel

- Capacitors connected in **parallel** have their top plates connected together and their bottom plates connected together.
 - Therefore the potential difference ΔV across the two capacitors (between the conductive wires on either side) is the same.
 - The capacitance of the combination is the sum of the capacitances:



Connecting Capacitors in Parallel

We usually just write the voltage difference as *V* even though it's a difference! Here the capacitors have the **same potential difference** *V*.



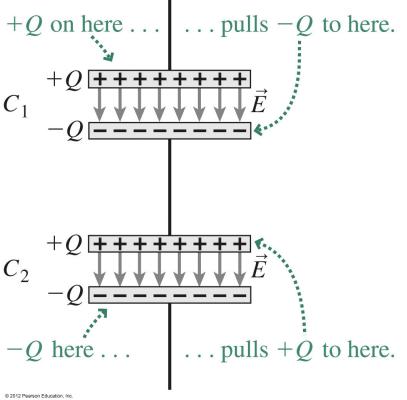
Connecting Capacitors in Series

- Capacitors connected in series are wired so that one capacitor follows the other.
 - The figure shows that this makes the charge on the two capacitors the same.
 - With series capacitors, capacitance adds reciprocally:

$$\frac{1}{C_{\text{series}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \dots$$

Thus the combined capacitance is lower than that of any individual capacitor.

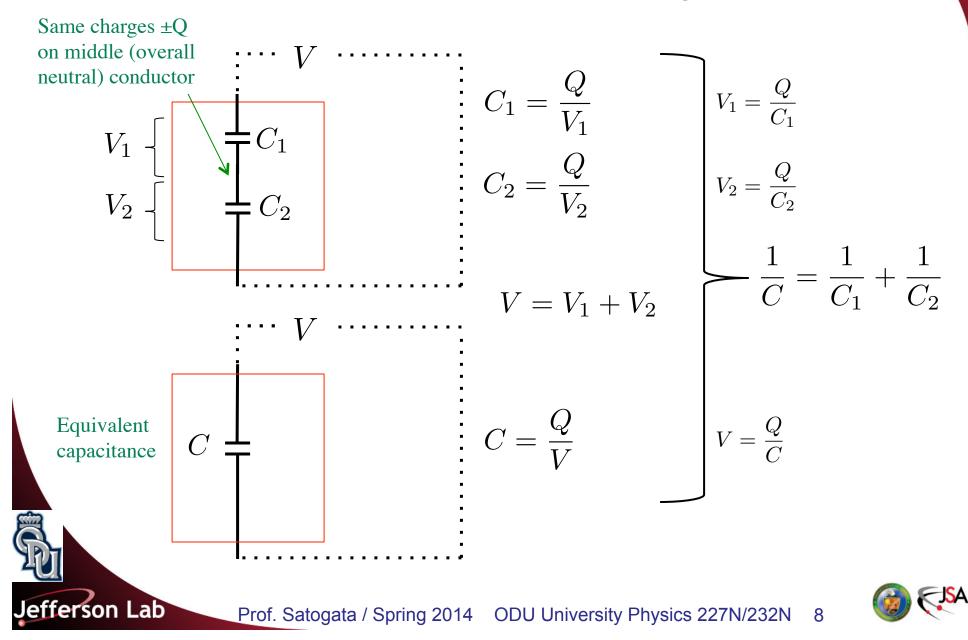
Jefferson Lab



 The working voltage of the combination is higher than that of any individual capacitor.

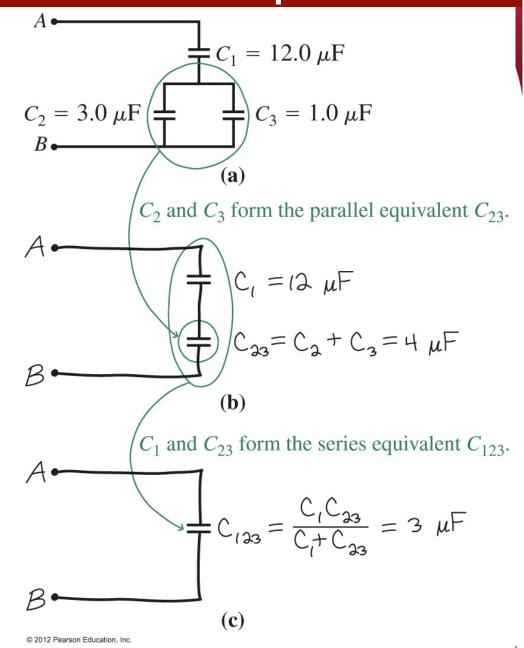
Connecting Capacitors in Series

Here the capacitors have the same charge Q.

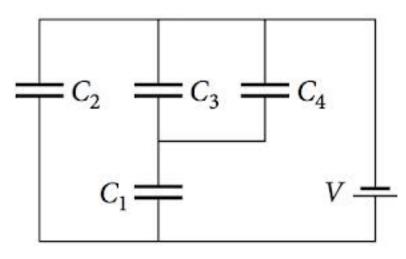


Circuits with Parallel and Series Capacitors

- To analyze a circuit with several capacitors, look for series and parallel combinations.
 - Calculate the equivalent capacitances, and redraw the circuit in simpler form.
 - This technique will work later for more general electric circuits.
 - You don't have to draw every single equivalent circuit as long as it's clear to you what you're doing.



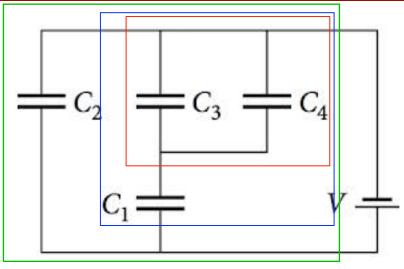
Let's Try It Out



 $C_1 = C_2 = C_3 = C_4 = 4 \ \mu \mathbf{F}$ $V = 30 \ \mathbf{V}$

- Find the equivalent capacitance of the capacitors
- Find the charge on each capacitor

Let's Try It Out: Hint



 $C_1 = C_2 = C_3 = C_4 = 4 \,\mu\text{F}$

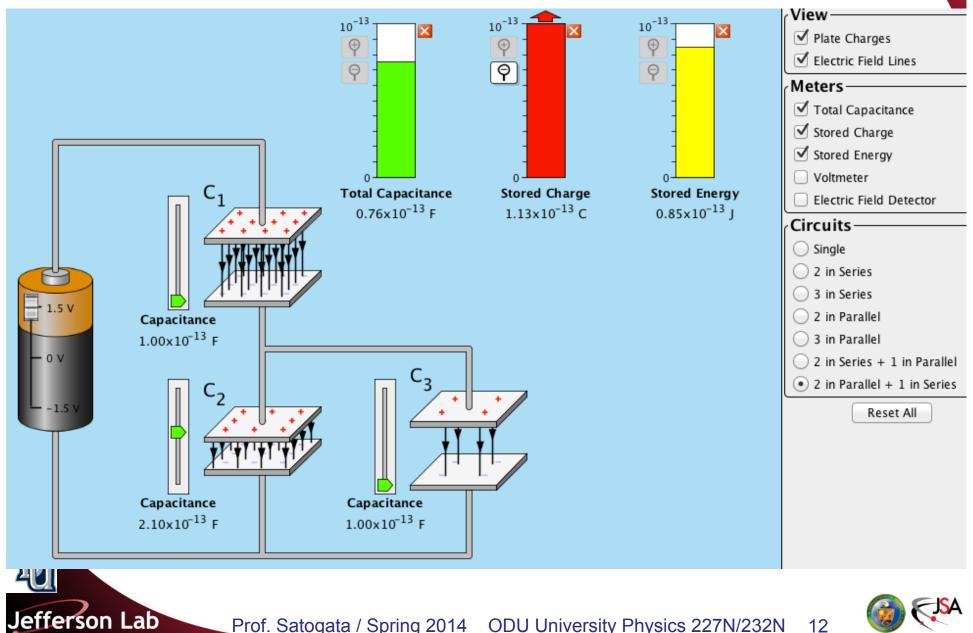
$$V = 30 \text{ V}$$

- Find the equivalent capacitance of the capacitors
- Find the charge on each capacitor
- "Unwrap" the circuit from the inside out
 - Red: two capacitors in parallel

- Blue: two capacitors (using the above) in series
- Green: two capacitors (using the above) in parallel

It's Time For Java App Wednesday™

http://phet.colorado.edu/en/simulation/capacitor-lab



Prof. Satogata / Spring 2014 ODU University Physics 227N/232N 12

Energy in the Electric Field

- The electrostatic energy associated with a charge distribution is stored in the electric field of the charge distribution.
 - Considering the uniform field of the parallel-plate capacitor shows that the electric energy density is

Energy per unit volume!

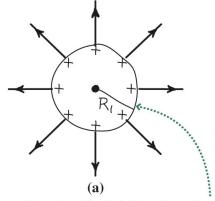
$$u_{\rm E} = \frac{E^2}{8\pi k}$$

This is a universal result:

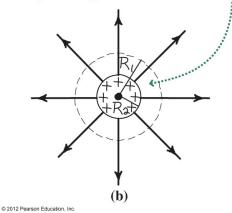
lefferson Lab

Every electric field contains energy with this density.

$$U_{\rm E \ in \ volume \ V} = \frac{E^2 V}{8\pi k}$$



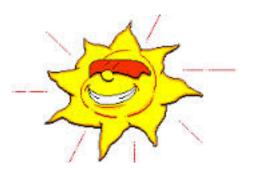
The work involved in shrinking the sphere ends up as energy in the electric field here.



What's The Electric Field of Sunlight?

- Energy/area at the Earth is about 1350 W/m²
- Let's say sunlight travels at the speed of light, c=3x10⁸ m/s
- One second of sunlight over one square meter therefore contains about 3x10⁸ m³ of sunlight and 1350 J of energy.

$$u = \frac{1350 \text{ J}}{3 \times 10^8 \text{ m}^3} = 4.5 \times 10^{-6} \text{ J/m}^3$$
$$u_{\rm E} = \frac{E^2}{8\pi k}$$



$$E = \sqrt{8\pi k (4.5 \times 10^{-6} \text{ J/m}^3)} = 1 \text{ kV/m}$$

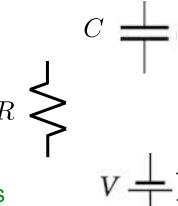
Jefferson Lab

This is pretty close, but a little high for reasons we'll get to next week. (The actual answer is still about 800 V/m!)

Chapter 24: Current, Resistors, and Ohm's Law

- "Classical" analog electronic circuits are made from four types of elements
 - Capacitors
 - Electrical energy storage: "springs"
 - Resistors

- Electrical energy dissipation: "friction"
- Voltage sources (EMF)
 - Electrical energy (potential difference) sources
- Conductive wires
 - Treated as perfectly conductive
 - (But we know they really have some small resistance too)
- We characterize electrical circuits with
 - **Voltage** (potential) differences *V* between various points
 - Current (electron) flow / between various points
 - DC: Constant current (including zero) AC: time-varying current



Electric Current

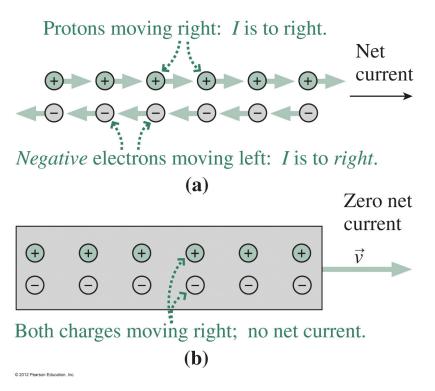
- Electric current is a net flow of electric charge.
 - Quantitatively, current is the rate at which charge crosses a given area.
 - For steady current, I =
 - When current varies with time, its instantaneous value is given by

$$\left| I = \frac{dQ}{dt} \right| \quad \text{Am}$$

lefferson Lab

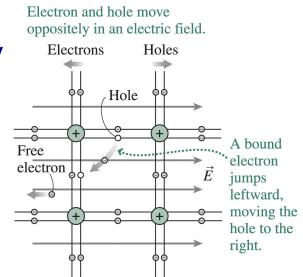
 $npere \equiv \frac{Coulomb}{sec}$

- The direction of the current corresponds to the direction of flow of the **positive** charges.
- Current has a direction



Conduction Mechanisms

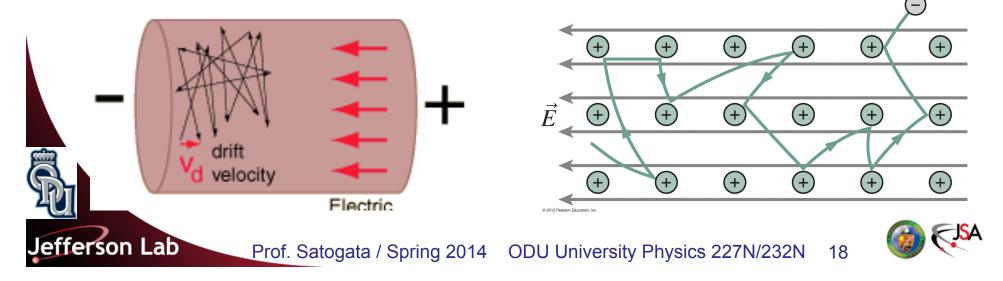
- Conduction occurs differently in different types of materials:
 - In metallic conductors, current is carried by free electrons.
 - In ionic solutions, current is carried by positive and negative ions.
 - Plasmas are ionized gases, with current carried by electrons and ions.
 - Semiconductors involve current carried by both electrons and "holes"—absences of electrons in a crystal structure.
 - Semiconductors are at the heart of modern electronics.
 - Their electrical properties can be altered by the controlled addition of small amounts of impurities.



- Superconductors offer zero resistance to the flow of current, and thus can transmit electric power without loss of energy.
 - Known superconducting materials all require temperatures far below typical ambient temperatures.

Conduction in Metals

- A metal contains a "sea" or "gas" of free electrons:
 - They're confined to the metal (conductor) but not bound to individual atoms.
 - The electrons move about in random directions with high thermal velocities.
 - On average, there's no current associated with thermal motion.
 - Applying an electric field adds a small drift velocity on the electrons' motion.
 - All electrons share the drift velocity, so it results in a current.



Ohm's Law: Microscopic

- Electrons often collide with ions (nuclei) in the metal's crystal structure
 - They usually lose energy this way
 - This limits how easily the electrons "flow" through the material
- This produces resistance to current flow
 - Quantified as ${\bf conductivity} \ \sigma$ of the metal
 - Current per unit area, or current density \vec{J} is then

$$J = \sigma \vec{E}$$

- Resistivity:
$$ho\equiv -\sigma$$

efferson Lab

 Table 24.1
 Resistivities

Material	Resistivity $({f \Omega} m{\cdot} {f m})$
Metallic conductors (2	20°C)
Aluminum	2.65×10^{-8}
Copper	1.68×10^{-8}
Gold	2.24×10^{-8}
Iron	9.71×10^{-8}
Mercury	9.84×10^{-7}
Silver	1.59×10^{-8}
Ionic solutions (in wate	er, 18°C)
1-molar CuSO ₄	3.9×10^{-4}
1-molar HCl	1.7×10^{-2}
1-molar NaCl	1.4×10^{-4}
H ₂ O	2.6×10^{5}
Blood, human	0.70
Seawater (typical)	0.22
Insulators	
Ceramics	$10^{11} - 10^{14}$
Glass	$10^{10} - 10^{14}$
Polystyrene	$10^{15} - 10^{17}$
Rubber	$10^{13} - 10^{16}$
Wood (dry)	$10^8 - 10^{14}$

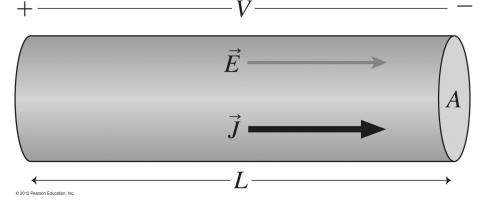
© 2012 Pearson Education, Inc.

100

19

Ohm's "Law" for Resistive Devices

How do we relate this to electric current and voltage?



efferson Lab

- V: potential difference
- \vec{E} : Electric field
- \vec{J} : Current density
- I : Electric current
- We can calculate a total resistance to current flowing based on the resistivity ρ and physical properties of the resistor

$$R = \frac{\rho L}{A}$$

A general rule (called a law though it's really not truly a law):

$$V = IR$$

Ohm's "Law"

Ohm's "Law": Microscopic and Macroscopic

Table 24.2 Microscopic and Macroscopic Quantities and Ohm's Law

Macroscopic	Relation	
Voltage, V	\overrightarrow{E} is defined at each point in a material; V is the integral of \overrightarrow{E} over a path. In a uniform field, $V = EL$.	
Current, I	\vec{J} is defined at each point in a material; <i>I</i> is the integral of \vec{J} over an area. With uniform current density, $I = JA$.	
Resistance, R	ρ is a property of a given material; <i>R</i> is a property of a particular piece of that material. In a piece with uniform cross section, $R = \rho L/A$.	
Ohm's law $I = \frac{V}{R}$	Microscopic version relates current density to electric field at a point in a material. Macroscopic version relates current through to voltage across a given piece of material.	
	Voltage, V Current, I Resistance, R Ohm's law	

Power Dissipated In A Resistor

We had a formula for the energy stored in a capacitor

$$U_{\text{stored in capacitor}} = \frac{1}{2}CV^2 = \frac{1}{2}QV = \frac{1}{2}\frac{Q^2}{C} \qquad C \equiv \frac{Q}{V}$$

- This is the energy stored in a capacitor at a particular charge
- Now we're considering circuits where charges is moving

$$I = \frac{dQ}{dt}$$

lefferson Lab

 The power P (energy per unit time!) dissipated by a resistive device with resistance R is

$$P = IV = I^2R = \frac{V^2}{R} \qquad V = IR$$

