USPAS Graduate Accelerator Physics Homework 3

Due date: Thursday January 22, 2015

1 C-M 5.4: Floquet Transformation

(a) (5 points) Show that the coordinate transformation
\[
\begin{pmatrix}
\xi \\
\zeta
\end{pmatrix} = \begin{pmatrix}
\beta - \frac{1}{2} \\
\alpha \beta - \frac{1}{2}
\end{pmatrix} \begin{pmatrix}
z \\
z'
\end{pmatrix}
\]
transforms the transfer matrix \(M = e^{J\mu} \) into the matrix
\[
N = \begin{pmatrix}
\cos \mu & \sin \mu \\
-\sin \mu & \cos \mu
\end{pmatrix}.
\]
These new coordinates \((\xi, \zeta)\) are sometimes referred to as Floquet or Courant-Snyder coordinates. Note that the ellipse of the Courant-Snyder invariant has been transformed into a circle. Show that the invariant \(W \) remains unchanged under this transformation. (The fact that it will preserves phase space area helps with your third homework problem of this set!)

(b) (15 points) Consider a Gaussian distribution of particles in the new coordinates,
\[
f(\xi, \zeta) = \frac{N}{2\pi \epsilon} \exp \left(-\frac{\xi^2 + \zeta^2}{2\epsilon} \right).
\]
Find the distribution in the old coordinates \((z, z')\). Evaluate the variances \(\sigma_z^2 = \langle (z - \langle z \rangle)^2 \rangle \), and \(\sigma_{z'}^2 = \langle (z' - \langle z' \rangle)^2 \rangle \), and the covariance \(\sigma_{zz'}^2 = \langle (z - \langle z \rangle)(z' - \langle z' \rangle) \rangle \).

2 C-M 5.5: Twiss Parameter Propagation

(10 points) Using the Courant-Snyder invariant
\[
W = \gamma z^2 + 2\alpha zz' + \beta z'^2,
\]
show that the Twiss parameters transform from \(s_1 \) to \(s_2 \) by the matrix transformation
\[
\begin{pmatrix}
\beta_2 \\
\alpha_2 \\
\gamma_2
\end{pmatrix} = \begin{pmatrix}
M_{11}^2 & -2M_{11}M_{12} & M_{12}^2 \\
-M_{11}M_{21} & M_{11}M_{22} + M_{12}M_{21} & -M_{12}M_{22} \\
M_{21}^2 & -2M_{21}M_{22} & M_{22}^2
\end{pmatrix} \begin{pmatrix}
\beta_1 \\
\alpha_1 \\
\gamma_1
\end{pmatrix},
\]
if the one-dimensional transport matrix is given by
\[
\begin{pmatrix}
z_2 \\
z'_2
\end{pmatrix} = \begin{pmatrix}
M_{11} & M_{12} \\
M_{21} & M_{22}
\end{pmatrix} \begin{pmatrix}
z_1 \\
z'_1
\end{pmatrix}.
\]

3 C-M 5.10: Conversion of Emittances

(10 points) Show that the conversion from rms to 90% and 95% emittances are approximately
\[
\epsilon_{90\%} = 4.605 \epsilon_{\text{rms}} \quad \text{and} \quad \epsilon_{95\%} = 5.991 \epsilon_{\text{rms}}
\]
for a Gaussian distribution. Hint: It is by far easiest to do this problem in the normalized coordinates \((\xi, \zeta)\) of the first problem.