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Ch 10: Angular Work, Power, Momentuyg

Todd Satogata (ODU/Jefferson Lab)
satogata@jlab.org
ttp://www.toddsatogata.net/2016-ODU

Monday, October 31, 2016
Reminder: The Third Midterm will be Mon Nov 21

Happy Birthday to John Keats, Dan Alderson, Nick Saban,
Neal Stephenson, Rob Schneider, and Peter Jackson!
Happy Halloween!

Please set your cell phones to “vibrate” or “silent” mode. Thanks!
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Review: Constant Angular Acceleration

= Problems with constant angular acceleration are exactly
analogous to similar problems involving linear motion in

one dimension.
= The exact same equations apply, with

x—0, v—=w, a—a

Table 10.1 Angular and Linear Position, Velocity, and Acceleration

Linear Quantity Angular Quantity
Position x Angular position 6
Velocityy = Angiilarvelodity B = o
elocity v = — ngular velocity w = —
7 dt - 4 dt
d iy d d*6
Acceleration a = 2 —f Angular acceleration @ = 2= —o0
dt dt dt dt

Equations for Constant Linear Acceleration

Equations for Constant Angular Acceleration

v = %(vo + v) (2.8)
v =1y, + at (2.7)

X =x9+ vyt + %at2 (2.10)
vi=vd + 2a(x — xp) (2.11)

o = (0 + o) (10.6)
®w = w,+ at (10.7)
0 =0, + wet + sar’ (10.8)
0’ = wg + 2a(0 — 6,) (10.9)
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Review: Torque

* Torque tis the rotational analog of force, and results from
the application of one or more forces. The same force is applied

at different points on the
= Torque is relative to a chosen rotation axis.

wrench.
= Torque depends on:
= the distance from the rotation axis to the force
application point. .
= the magnitude of the force F' F
= the orientation of the force relative to the =
displacement 7 from axis to force application
point: —
T=rxF 71=rFsinf

Closest to O, 7 is smallest.

Farther away, T becomes larger.

The same force is applied at different angles.

(b)
, ) Torque decreases when F Torque is zero when Farthest away, 7 becomes greatest.
T(nquc is glcalcst W !wn F is no longer perpendicular F is parallel to 7. R :
is pc1pcndlull:1} for. to 7 %
K * o ) RS A 0 (e L




Review: Rotational Analog of Newton’s Law

= Rotational inertia / (or moment of inertia) is the rotational

analog of mass. Rotating the Farther away,
= Rotational inertia depends on the mass near the it’s harder
distribution of mass and its distance = 'S 'S €45V losps &

from the rotation axis, similar to

Rotation axis
center of mass. == RN

» Rotational acceleration, torque,
and rotational inertia combine
to give the rotational analog
of Newton’s second law F' = ma

T =1l

(or, more properly with vectors)
T =1«

like F = ma

) © 2012 Pearson Education, Inc. e \
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Review: Calculating Rotational Inertia

For a single point mass m, rotational inertia is the product of mass
with the square of the distance r from the rotation axis:
2 my

I =mr Rotation

For a system of discrete masses, the B\ axis
rotational inertia is the sum of the
rotational inertias of the individual

masses: r3
_ 2 m, r
I = E m;r; .
mjy
For continuous matter, the rotational Thtetl_msi élellzelltg//;l contributes
. . . . . rotational 1mertia r= a m.s.,,
inertia is given by an integral over the
distribution of matter: i
dm
I = / r? dm :
1Rotation
f de axis

Similar to center of mass: ch =

M
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Some Rotational Inertias of Simple Objects

= We really do need to use calculus to figure out rotational inertias of
most simple (three-dimensional) geometrical objects

2 2 I:iM 2 b2

>
Solid
b Hollow
-5'1 %
I = §ML2 1 5
I'=o MR I =-MR?
all 3

Y JSA
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Review: Parallel Axis Theorem

= |If we know the rotational inertia /., about an axis through the
center of mass of a body, the parallel-axis theorem allows us
to calculate the rotational inertia / through any parallel axis.

This axis 1s through

= The parallel-axis theorem e e e
states that 01 = ME".
2 L
I =1.,+ Md

where d is the distance from
the center-of-mass axis to the l
parallel axis and M is the total
mass of the object.

(a) (b)

o
.
*
.
.

This parallel axis is
a distance d = R away
from the original axis,
sol = 2MR* + Md* = ZMR>.

5
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Example: Hula Hoop Rotational Inertia

= What is the rotational inertia of a [ \
hula hoop of radius r and mass | \
M around its edge? |

= |ts center of mass is (obviously)
at the center of the circle and all
of its mass is at the same radius

Loy = Mr?

» The parallel axis theorem gives
Ledge = Mr* + Mr* = 2M7r?

Interesting... It takes twice as much

o A
torque to turn a ring around its U
edge as it takes to turn around its

_ 2 -
center. I = Mr J =?

(

%
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Example: Hula Hoop Rotational Inertia

= \What is the rotational inertia of a
hula hoop of radius r and mass
M around an axis 2r from its

center? I=...7
. . A

= |ts center of mass is (obviously)

at the center of the circle and all )

of its mass is at the same radius Iy = Mr 5

L 2
]Cm M /\ /\

= The parallel axis theorem v

gives...

(
(

I = Mr? I =7

3 JSA
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Calculating Parallel Axis Theorem

= PAT. > i
g0 I'z‘)iM\' pE AT

\_,,.___.3

"Iz e
=) 1(0«‘63 \z ML &M\ ('b\ LQ IM:M?.
i

& '"ML
ey Tlesg = MR+ ME*

®

4 1 )T
o "\;V\L = 3?‘“. z
1 (2@ = MR%“+M(20)
L = OMR*®

) JSA
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Homework: Moment of Inertia

Note that the definition of moment of inertia means that
individual moments of inertia can be added together

= For example, one of the homework problems involves a solid

rod plus two additional point masses on the ends of the rod,
rotating around the center of the rod

GV “ J-\, FEmpie preces —
L ek 1= e

: W*I\,ﬂ,\\f\*lu\z
Alternative = 2M\L « M(3) *'M( )

rotational
axis

3 JSA
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Combining Linear and Rotational Motion

= \We now have the tools to do some
iInteresting problems...

= Bucket of mass m unrolls from a cylinder
of mass M and radius R into a well.

= What is the bucket’s (linear) acceleration?

y/ A
Y
Be careful Cyhnder E T=1«
about signs!

¢, 2
bucket cylinder Leytinder = §M R

=TRsinf =TR
Bucket : ZF =mg— 1 = ma ' o

a=a/R

mg — Ma/2 = ma \TR GMR?)%

% a = o = T =Ma/2
M/2+m

Y JSA
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Similarity to Former Inclined Plane Problems

Lok ak V‘a‘\'ad'w% calwdu
/quuu? T 2xF=@xT=2T

NM‘\'M T=1K 0(3%
T =%

?
Lo IX&’V-ZTJ
Lede ok 8 "y 2o
(ol weg > L@—:" e g\ve»‘\' a

%l Phgpics B dove o T, T (owednic )
D JSA
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Combining Rotational and Linear Dynamics

* |n problems involving both linear and rotational motion:
= IDENTIFY the objects and forces or torques acting.

= DEVELOP your solution with drawings and by writing Newton’s law
and its rotational analog. Note physical connections between the

objects.
= EVALUATE to find the solution.

= ASSESS to be sure your answer makes sense.

A bucket of mass m drops | Free-body diagrams

into a well, its rope for bucket and cylinder
unrolling from a cylinder of B
mass M and radius R. Rope tension T provides

_ . the connection
What's its acceleration?

e

—>

7

al

07

.Jefron Lab

Newton’s law, bucket:

F...=mg-T=ma

net —

Rotational analogy of
Newton’ s law, cylinder:

RT = la/R
Here [=1MR
Solve the two equations to
get
mg

a=—"
m+5M

JSA
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Rolling Motion

» Rolling motion combines translational (linear) motion
and rotational motion.

= The rolling object’s center of mass undergoes translational
motion.

= The object itself rotates about the center of mass.

= |n true rolling motion, the object moves without slipping and
its point of contact with the ground is instantaneously at rest.

= Then the rotational speed w and linear speed v are related
by v = wR, where R is the object’ s radius.

Motion of ... motion about ... motion of individual
the CM plus . the CM uluals . points on the wheel.
"‘3 2‘)cm

° \ —  The bottom of /: ch\
—  the wheel is at
rest! But
These two velocity Qn]y tor:an el

..... , instant. =
vectors sum to @ l\(, = 5 O
“Vem .

zero velocity at  bottom.
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Rolling and Rotating

| Moywig with wheel
(B wans weloaky Bt st
\Y N v

} JSA
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Rotational Energy

= A rotating object has kinetic energy

with its rotational motion alone.

* |t may also have translational kinetic energy: K

K

rot

Iw~|associated

1
2

trans

* |n problems involving energy conservation with rotating
objects, both forms of kinetic energy must be considered.

* For rolling objects, the two are related:
» The relation depends on the rotational inertia.

Example: A solid ball rolls down a hill. How
fast is it moving at the bottom?

)
&>
)
<
il

Energy bar
graphs 0

- |
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Equation for energy conservation
Mgh = lez +llw2
2 2
2

e L2\ ( L) 2 L
2 205 R} 10

Solution:
10
7
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Energy Conservation Example

A rework of a problem | tried on the board in class...

Consider the loop the loop problem, now with a solid ball rolling down a track
and barely making it around the loop. What is the minimum height that the
ball needs to roll from (without slipping) to make it around a loop of radius R?

Q@r I= %Mﬁ v
Rotating without slipping: w = -
2
7, - R Solid uniform ball: I = ngrQ
Barely make it through the loop:
2
- Qcentrip — % =9 = U2 — Rg
State KEtranslation KErotation I:,Eg r2w? =02 = Ry
Trgfn;f 0 0 Mgh Conservation of energy:
_ IRV SN
Top of loop 1M1J2 11002 Mg(2R) Mgh = §MU +§IW +2MgR
2

’ VISV 209 R
- = —Mv —Mr-w
Watch: /Mt g 2 5 7
ttps://www.youtube.com/watch?v=4fCFxD_Ud9E R R
/qﬂzﬁﬁ? +7g5 +2gk = h=27R

3 JSA
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Rotational Work

» A tangential force applied to a rotating body does work on it.

----- Upper limit = final angular position
Work done by ..., 9" " =
: . 2 : ,
a torque 7, e t Integral of the torque
W = mealy) e
2 : with respect to angle

-+ Lower limit = initial Lll]gU]LlI' position

(b) Overhead view of merry-go-round
(a) ds

) Child applies
| tangential force.

{ G &3A
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» Rotational motion in one dimension is exactly analogous to
linear motion in one dimension. Displacement

= Linear and angular motion:

geffergon Lab

| Linear
motion

Position, x T

= Analogies between rotational and linear quantities:

Linear Quantity Angular Quantity Relation Between Linear
or Equation or Equation and Angular Quantities
Position x Angular position 6

Speed v = dx/dt
Acceleration a
Mass m

Force F

Kinetic energy Kins= 5

1
S my

Angular speed w = d/dt
Angular acceleration o

Rotational inertia /
Torque 7

Kinetic energy K, = %

2 Iwz

Newton’s second law (constant mass or rotational inertia):

F = ma

© 2012 Pearson Education, Inc.
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Rotational inertia, /

. 2O,

Mass closer ~ Same mass,
to axis: farther from axis:
lower / greater /

I=  mr? —»Jrz dm

Discrete
masses

Continuous
matter

vV = wr

a, = ar

I = frz dm

7 =rFsin6
Torque, 7

Rotation axis

7 = rF sin@

ODU University Physics 226N/231N 21
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Direction of the Angular Velocity Vector

= The direction of angular velocity is given by the
right-hand rule.

= Curl the fingers of your right hand in the direction of rotation, and your
thumb points in the direction of the angular velocity vector

fai

o
-4

. JSA
Jefferson Lab Prof. Satogata / Fall 2016~ ODU University Physics 226N/231N 22 @ @



Direction of the Angular Acceleration

= Angular acceleration points in the direction of the change

in the angular velocity Ao

A—0 At dt

= The change can be in the same direction as the angular
velocity, increasing the angular speed.

= The change can be opposite the angular velocity, decreasing
the angular speed.

= Or it can be in an arbitrary direction, changing the direction and
speed as well. 4 1 A g

w. wie
initial =
) winnialA
A /\ —
) Wiinal
T D ;

>
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Direction of the Torque Vector

= The torque vector is perpendicular to both the force
vector and the displacement vector from the rotation
axis to the force application point. |

= The magnitude of the torque is
T = rFsiné.

— Of the two possible directions
perpendicular to 7 and F,
the correct direction is given

- Start with the
by the rlg ht hand ru Ie - vectors tail to Curl your fingers in a
tail. =, direction that rotates
. R the first vector ()
- TO rq Ue IS CompaCtly \ _--onto the second (F).
F

expressed using the vector
cross product:

Then your

T =71 X F # *.  thumb points

7 (out of page) in the direction

> o of 7 =7FXF. _ @JSA
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Angular Momentum

= For a single particle, angular momentum L is a vector
given by the cross product of the displacement vector
from the rotation axis with the linear momentum of the

particle: .
L=rxp S

— For the case of a particle in a
circular path, L = mvr, and L is
upward, perpendicular to the
circle.

— For sufficiently symmetric
objects, L is the product of
rotational inertia and angular
velocity:

. Vv is perpendicular
“lor.

—

%[ L=1&

) JSA
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Newton’s Law and Angular Momentum

* |n terms of angular momentum, the rotational analog of

Newton’s second law is .
. dL
T=—o
dt
= Therefore a system’s angular momentum changes only if

there’s a non-zero net torque acting on the system.

= |f the net torque is zero, then angular momentum is
conserved.

« Changes in rotational inertia then result in changes in
angular speed:

Mass closer to
axis: small 7,

large w, same

L=Iw

The skater’s angular momentum
3 is conserved, so her angular

S amsamdlee  Speed increases when she
artomaxis: - raduces her rotational inertia.

~"large I, small @

JSA
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Conservation of Angular Momentum

* The spinning wheel initially contains all the system’s
angular momentum.

* When the student turns the wheel upside down, she
changes the direction of its angular momentum vector.

» Student and turntable rotate the other way to keep the
total angular momentum unchanged.

The student stands on a She flips the spinning

stationary turntable holding a wheel, reversing its angular

wheel that spins counterclockwise; momentum. The total angular

the WhCCl’S ngular momentum momentum is conserved, SO =

points upward turntable and student (ts) must

1 rotate the other way. i
o otal — ee o .".“ Ligtal
= RS

: (a) (b)
> @ @JSA
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Precession

= Precession is a three-dimensional phenomenon involving

rotational motion.

» Precession occurs when a torque acts on a rotating object, changing
the direction but not the magnitude of its angular momentum vector.

= As a result the rotation axis undergoes circular motion:

Precession of a gyroscope

Change AL is also into the page,
so the gyroscope precesses, its tip
describing a circle.

T points into
the page.

(]1'{1\'i1)' exerts

a torque about the
pivot; 7 =7 X Fis
into the page.

)
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Precession slowly changes

the direction of Earth’ s rotation axis

Torque c: auses axis
to precess. k

NOW\%L 13,000 years
F

Near side is closer
to Sun, so F| > F;
the result 1s a
torque.

in future

Sun
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= Angular quantities are vectors whose direction is generally
associated with the direction of the rotation axis.

= Specifically, direction is given by the right-hand rule.

= The vector cross product provides a compact representation
for torque and angular momentum.

Start with the
vectors tail to Curl your fingers in a

0] tail. =, direction that rotates
’ ¥ the first vector (r)

\ .--onto the second (F).
- g
F 7

%

@Thcn your
# thumb points
7 (out of page) - in the direction
of 7 =FXF.

= Angular momentum is the rotational analog of linear
momentum: [ =7 x p; with symmetry, L = I&.

* In the absence of a net external torque, a system’s angular

momentum is conserved.

%
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