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SLAC-121 Addendum+ 
M. Sands 
May 1979 

PLUS OR MINUS ‘I’ 
ALGEBRAIC SIGNS IN THE STORAGE RING EQUATIONS OF 

SLAC REPORT NO. 121* 

When I was writing SLAC Report 121, I was making the implicit assumption 
that the curved parts of the design orbit would always bend in the same direction. 
The RLA design shows that such an assumption was short-sighted. I have, there- 
fore, reviewed SLAC-121 to see which equations may need to be changed when the 
design orbit has parts with a reverse curvature. Fortunately, very few changes 
are required. In this note, I report the adjustments that should be made in SLAC- 
121 so that the results will be applicable to rings of arbitrary curvature. In addi- 
tion, I list other miscellaneous corrections - particularly of algebraic signs. 

A. Comments on Part II of SLAC-121 
In describing the design orbit, it was assumed that the direction of rotation 

was clockwise (looking down on the orbit). See Fig. 7. (I now feel that this was a 
poor choice, but that’s life. ) That is, the orbit was assumed to curve toward the 
right, while the positive direction of the horizontal (or radial) coordinate, x, was 
taken to the left. The positive direction of the z-coordinate, of course, defines the 
%pwardYf direction. The equations of SLAC-121 will, as we shall see, generally 
hold with a minimum of tinkering if we maintain the convention that the x-coordinate 
is taken as positive to the left of direction of travel, and if we insist that the net 
curvature of the design orbit shall be toward the right, while permitting that parts 
of the orbit may have opposite curvatures - namely, toward the left. 

With these understandings, Eqs. (2.1) and (2.2) may be left as they are, but 
Eqs. (2.3) and (2.4) need the following comments. It is convenient to define the 
curvature function G(s) so that it is positive when the orbit curves to the right 
(toward negative x), and is negative for the opposite curvature. Equation (2.3) 
will give this result provided that we specify that e shall represent the electric 

sign, of the circulating particle. (That is, e is a negative number 
for electrons. ) For consistency, 2 should be interpreted the same way in Eq. (2.4), 
and, also in all subsequent equations in SLAC-121. 

* 
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Equation (2.5) now defines the “radius of curvature*’ of the orbit ps as an 
algebraic quantity. The radius is positive if the center of curvature is toward 
negative x, and negative of the center of curvature is toward positive x. 

Equation (2.6) has a typographical error; it should read: 

-de, = T = G( s)ds 
S 

(It is intended here and later that angles in the plane of the orbit are measured 
with the usual convention - positive angular changes are counter-clockwise. ) 

With these adjustments all of the remaining equations of Part II need no change 
to take into account orbits that may have reverse bends. It is only necessary to 
keep in mind that e, G(s), p,, and KI(s) are all quantities with appropriate signs, 
and in particular, that G(s) and ps (and, of course, KI(s)) may have both positive 
to negative values around the ring. 

Notice, however, that the definition of an f’isomagneticT’ guide field in Eq. (2.9) 
intends that G(s) shall have a unique value - including the sign - in all bending 
magnets. Our conventions then dictate that Go = l/o0 is necessarily a positive 
number. 

While I am at it, I may as well point out some careless errors of sign in Part 
II that are not basically related to the present discussion. 

Notice that Kx, KZ, and the generic K have been defined to be positive when they 
are defocussing. See Eqs. (2.19), (2.20) and (2.31). * Equation (2.32) is then wrong 
- it assumes the opposite definition. So Eq. (2.32) should read 

K< 0: x = a cos (m s + b) 
K= 0: x=as+b 
K :O: x = a cash (fi s + b) (2.32) 

Similarly, the matrices of Table I are wrong. Letting the conditions on the left of 
Table I stand as is (K < 0, K = 0, K > 0 in that order), the matrix elements need 
correction by replacing K everywhere with its negative. (Change K to -K, and -K 
to K. ) Sorry about that. 

* 
Probably a bad choice. And, clearly, I was quite ambivalent, since I shifted 
ground and wrote some of the equations with the opposite convention. 
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A careless error of sign was also made in writing Eq. (2.84). Clearly, if 
6G is to be interpreted in the normal way as the change in G (with appropriate sign) 
Eq. (2.84) will follow from the immediately previous equation if it reads 

Axt=-6GAs. (2.84) 
The error made here was propagated in all subsequent equations, so all of the - 
equations of Section 2.10 should be corrected by changing 6G to -6G. 

There is a typo in Eq. (2.60). The last integral should be preceeded by the 
fat tor 1/27r. 

B. Comments on Part III of SLAC-121 
All of the numbered equations in this part are, I believe, correct as they stand 

- with G(s) an algebraic quantity with appropriate sign. 
There are a few errors in the text. In the line above Eq. (3.5) the equation 

should read: Kx = -G2. In the material above Eq. (3.6) 6G should be replaced 
wherever it occurs by -8G. 

C. Comments on Part IV of SLAC-121 
The material of this part is OK. In particular, the integral for 9, Eq. (4.18) 

contains G(s) to the first power, so those parts of the orbit with reverse curvatures 
will (for the same sign of KI) give ‘an opposite contribution to the integral. 

There are a few typos. In Eq. (4.13) p should read Ps. In Eq. (4.17) the large 
parenthesis which should preceed l/p is broken. In Eq. (4.26) the long bar after 
the first z1 should be an arrow ( +). In Eq. (4.48) the negative sign after the equal 
sign should be deleted. 

1 D. Comments on Part V of SLAC-121 
This part suffers considerably from the implicit assumption that the design 

orbit had a homogeneous (always positive) curvature. To make it apply generally 
to orbits with some segments of abnormal curvature the following changes are 
required. 

Eqs. (5.3), (5.9): wc is a positive quantity, so in these equations p should 
be replaced by its absolute value ) p]. Eq. (5.20) : Replace p3 by lp31. 

It follows that the quantum excitation depends only on the magnitude of the 
orbit curvature. So the following changes should be made in the rest of Part V. 
Eqs. (5.40), (5.41): Replace y:G by ‘yi[Gi. 
Eqs. (5.42), (5.44), (5.45), (5.47), (5.82), (5.83): Replace G3 by 1G31. 
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There are also a couple of typos. 2/3 In the middle of page 129, E. should read 
3/2 

E. - In Eq. (5.71) the inner parenthesis should be squared - as in the preceding 
equation. 
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I. AN INTRODUCTORY OVERVIEW 

1.1. OpeninP Remarks 
Electron storage rings have now come of age. With the successful operation 

of Adone, 1 experiments will now begin using colliding beams of electrons and 
positrons with energies of 1 CeV and beyond, expanding the area of storage ring 
research which was begun at lower energies with the pioneering instruments at 
Stanford, Frascati, Novosibirsk, and Orsay. Projects under way at Novosibirsk, 
Cambridge, Hamburg, and Stanford will soon provide stored colliding beams of 
electrons at even higher energies. Larger numbers of workers will be basing 
their research in particle physics on these instruments. Many of the physicists 
who will be using storage rings will not have had a part in their design and con- 
struction, and will not initially have a knowledge of their inner workings. The 
aim of this report is to provide for such physicists a review of the basic physical 
processes that determine the behavior of electron storage rings - with a particu- 
lar concern for their performance as instruments for research in particle physics. 
Because of this aim, the material is generally not presented in the form which 
might be most convenient for those who will be interested in the design of storage 
rings. . It is,’ rather, developed in a form intended to give the using physicist an 
understanding of the inherent properties of his instrument - especially those 
which will have an influence on his observations - and to give him some feeling 
for its basic limitations and its ultimate capabilities. 

In the rest of this introduction I give a qualitative description of each of the 
basic phenomena that play a role in colliding beam storage rings, including a 
discussion of the factors which determine the luminosity. This first part is intended 
to provide a background and a vocabulary for the appreciation of the other reportst 
which describe the operating experience with existing rings and the projects for 
new rings. In the remaining parts I shall consider in detail the theory of those 
basic single particle processes which determine the ultimate limits on the per- 
formance of storage rings. A discussion of the important collective effects, 
which have lead to many practical difficulties in high intensity rings, is @ 

t Other “reportsl’ mentioned here refer to other contributions at the Varenna 
Summer School of 1969. 
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included here, but will be found in the report of Pellegrini. At the end, I return 
to a discussion of the limitations on the performance of high energy storage rings, 
and apply the results to an illustrative example - the new Stanford design for a 
2-3 GeV ring. 

1.2. Basic Processes 
Let me begin with a brief qualitative description of the basic processes which 

come into play in producing a stored electron beam. f (See Fig. 1. ) 

FIG. l--Schematic diagram of an electron storage ring. 

-- A short pulse of a beam of electrons is injected into a vacuum chamber 
embedded in a more-or-less circular magnetic guide field. The guide field leads 
the electrons around in more-or-less closed paths to make a stored beam. -- 

-- The guide field has focussing properties which drive all electrons toward 
an ideal design orbit and cause them to execute lateral (radial and vertical) beta- 
tron oscillations about the ideal closed path. t’! 

-- During each revolution an electron loses a small fraction of its energy 
by synchr-otron radiation. For stored electrons this energy loss is compensated 

f I shall always speak only of electrons, since positrons are, of course, just 
electrons with the opposite charge. 

ff The design orbit is taken to lie in a horizontal plane. 
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for by a corresponding gain of energy from a radio frequency cavity (or from 
several cavities acting in concert. ) 

-- The periodic accelerating field collects the electrons into circulating 
bunches, within which the individual electrons oscillate in longitudinal position 
and in energy relative to an ideal reference particle at the center of the bunch. 
The associated motions in longitudinal position and energy are called the 
synchrotron oscillations. f 

-- The energy loss by synchrotron radiation together with the compensating 
energy gain from the rf cavity gives rise to a slow radiation damping of all os- 
cillation amplitudes; the trajectory of each electron tends toward that of an ideal 
reference particle at the center of the bunch (which moves with constant speed 
along the design orbit. ) 

-- Radiation damping does not conserve phase density, so it is possible to 
inject, successively, many pulses into the neighborhood of the same ideal orbit 
and obtain high circulating currents from weak sources - for example with 
positron beams. 

-- The damping of all oscillation amplitudes is effectively arrested because 
of a continuous excitation of the oscillations by “noise” in the electron energy, 
which comes about from the fact that the synchrotron radiation is emitted in 
photons of discrete energy - the so-called quantum fluctuations of the energy loss. 

-- In stationary conditions a balance is reached between quantum excitation 
and radiation damping, leading to a statistically stationary distribution of the 
oscillation amplitudes and phases of the electrons in a bunch. The bunch then 
takes on the aspect of a traveling strip of ribbon which has a stationary “size” 
and “shape”, with a Gaussian distribution of amplitudes in each of the transverse 
and longitudinal coordinates (see Fig. 2). (The shape of a bunch will be different 
at each azimuthal position because the focussing properties of the guide field vary 
from place to place, but in the stationary condition the bunch has the same shape 
at each successive transversal of any chosen azimuth. ) 

f Often called “phase” oscillations. I prefer a different term in order to avoid 
the confusion which results when one wishes to speak of the phase of the “phase” 
oscillations. 
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DESIGN 
ORBIT 

(b) IDEAL REFERENCE 

DESIGN ORBIT 1.1111 

FIG. 2--Circulating bunches in a stored beam. 

-- For each coordinate of an electron there is some maximum oscillation 
amplitude above which the electron no longer remains capturedin the bunch. We 
may refer to the range of stable amplitude in each coordinate at its aperture. An 
electron is lost from a bunch when some disturbance increases the amplitude in 
any coordinate beyond the corresponding aperture limit. The aperture limit for 
each coordinate may be set by.a physical obstacle which intercepts the electrons, 
or by nonlinear effects in the focussing forces which lead to unbounded trajectories 
for large displacements from the ideal reference electron. 

-- Electrons may be lost by scattering or energy loss in collisions with 
molecules of the residual gas in the vacuum chamber,? or by a large statistical 
fluctuation in the quantum excitation of an oscillation amplitude. 

* * * 

The basic processes considered above are the single-particle effects which 
are primarily responsible for the intrinsic properties of a stored electron beam. 
Until now I have considered a bunch as a collection of noninteracting electrons 
each of which moves as though it were alone in the storage ring. Unfortunately, 
life is not so simple. 

f Scattering on the residual gas can, in principle, also modify the shape (and 
increase the size) of the stored bunch. But with relativistic electrons and the 
low chamber pressures required for long beam lifetimes this effect is generally 
negligible. 
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1.3 Collective Effects 
When the number of electrons in a circulating bunch is large enough (typically, 

greater than lo9 or so) interactions among the electrons of a bunch, or among 
bunches, become important - and have, in fact, been a serious problem in all 
electron storage rings. I turn now to a brief listing of the most significant col- 
lective effects. 

-- The AdA- or Touschek-effect. Two electrons oscillating within a bunch 
may Coulomb scatter, transferring some of the oscillation energy of each electron 
from one coordinate to another. The new amplitudes in the second coordinate may 
lie outside the available aperture, or may contribute to an increase of the bunch 
dimensions. The Touschek-effect is generally significant only at low energies - 
below 1 GeV or so. 

-- Coherent oscillations. Each electron in a circulating bunch produces 
electromagnetic fields in the vacuum chamber which influence the motion of the 
other stored electrons. f Such collective interactions among the electrons can 
lead to unstable coherent oscillations, in which all of the electrons of a bunch 
oscillate in a collective mode whose amplitude grows exponentially with time. 
Such coherent oscillations may.involve either the transverse or longitudinal 
motion of the electrons and can lead to a growth of the bunch size or to the loss 
of electrons from the bunch. 

-- Constructive interference of the radiation fields of electrons in a bunch 
may give rise to coherent synchrotron radiation, which can increase the energy 
loss of individual electrons. (This effect is not believed to be significant in the 
storage rings now in operation. ) 

* * * 

To get the high current densities desired in electron storage rings it is 
generally necessary that the coherent instabilities be suppressed or otherwise 
controlled. Then the remaining collective effects (which are essentially inco- 
herent) combine with the single particle effects discussed earlier in determining 
the bunch dimensions. (I am assuming that the strange bunch-lengthening effect 
observed in many storage rings - which is, as yet, not understood - will 

f The direct electromagnetic interaction between two electrons of a bunch decreases 
as the energy squared and is generally negligible for high energy storage rings. 
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ultimately be explained in terms of one or another of the processes already 
described. ) 

Once one has learned how to make a high current, stored beam, it remains 
only to prepare two of them and arrange that they collide. Except that, unfortu- 
nately, new complications then arise. 

1.4. Two-Beam Effects 
When two stored beams are made to collide - by arranging things so that the 

orbits of the two beams intersect, and that bunches of each beam arrive simulta- 
neously at the intersection - the electron motions are disturbed by two-beam 
effects. 

-- When an electron of Beam 1 passes through the intersection, it feels the 
strong electromagnetic field set up by Beam 2. This macroscopic field disturbs 
the single-particle orbits of the electrons on Beam 1, and at sufficiently large 
current densities, leads to what we may call a %oftf’ instability - one in which 
there is an incoherent growth of the transverse oscillation amplitudes and, there- 
fore, of the dimensions of Beam 1. It is this effect which will, in general, set 
the ultimate limit on the rate of high energy interactions which can be achieved 
in electron storage rings. 

-- The forces between the two beams will couple the coherent oscillation 
modes of the two beams and can produce unstable modes in the two-beam system. 
Also these coherent oscillations must be suppressed if successful colliding beam 
operation is to be achieved. 

-a Close collisions between pairs of particles in the colliding beams can 
cause scattering or energy loss with a resultant loss of the particles from the 
bunch, or an increase of oscillation amplitude. Such effects are, of course, 
welcome; they are, after all, the collision processes the storage rings have been 
constructed to produce! 

-- The trajectories of the stored beam can be arranged so that the counter- 
rotating beam collide head-on or at some small crossing angle. The magnitude 
of the crossing angle affects both the size of the zone of particle-particle collisions 
and the strength of the macroscopic beam-beam interactions; this angle plays, 
therefore, an important part in the performance of the storage ring. 
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1.5 Luminosity 
Given the energy of the particles in a storage ring, the next important param- 

eter is its luminosity, which is defined as the counting rate of events for a process 
of unit cross section. I shall complete this introduction with a brief discussion 
of the factors which determine the luminosity of a storage ring. The treatment 
is intended to serve as a basis for the following sections of this report, and also 
as a background for the other reports which discuss the experiences with operating 
rings or the designs of projected rings. Consider some particular process which 
can occur in the collisions of the particles in two colliding beams. (You may 
include, if you wish, in the definition of the “process, If the requirement that 
certain particles be detected in certain counters. ) Let c be the cross section, 
for the process and R the rate of events of that kind which occur at a particular 
intersection region; then the luminosity 5Z’ is defined by 

R=.9? (1.1) 
(If the two beams collide at more than one place around the ring, the luminosity, 
as used here, will refer to the events at only one of the intersections. ) 

Let’s look now at how the luminosity is related to the properties of the stored 
beams. I Consider first the simplest situation in which each beam contains only 
a single bunch and these bunches collide head-on at the intersection. (See Fig. 3. ) 

INTERACTION 

REGION 

NI - 
AREA A 1632A3 

FIG. 3--Head-on collision of two bunches. 
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The total number of particles in the bunch may be different for the two beams - 
say N1 for one beam and N2 for the other. Let’s imagine for the moment that a 
bunch is a ribbon-like object with a transverse area A, and that there is a uniform 
density of particles inside. (For a rectangular transverse section the area A 
would be just the product of the width w and the height h. ) Let the bunches cir- 
culate around the ring with a revolution frequency f. When a particle of Beam 1 
passes through the bunch of Beam 2 the probability of an event of unit cross 
section is N2/A. Since there are NI particles in Beam 1 and the bunches collide 
at the frequency f, the luminosity at the interaction region would be given by 

N1N2f ST (1.2) 

The model of a bunch I have just used is, of course, over simplified. As 
described earlier, we expect a bunch to have a Gaussian distribution of particle 
density in each coordinate - the transverse section of the ?ibbon” is a fuzzy 
ellipse. Suppose we let w andh stand for the width and height of the horizontal 
and vertical density distributions in a bunch, where by these dimensions I wish 
to refer to twice the root-mean-square spread of the distributions. We may then 
define the ffarea’1 of the bunch to be ~’ 

A=7NVh 
4 (1.3) 

This area may not, however, be used directly in Eq. (1.2) because the luminosity 
will be obtained from the overlap integral of the two-dimensional density distri- 
butions of the two bunches. This integral just contributes a factor of l/4, so we 
have, for real (Gaussian) bunches, that 

g%3= 1 NlN2f 
z-x- (1.4) 

with the area defined as in Eq. (1.3). 
Next consider the effect of intersection at an angle. Suppose that the trajectories 

of the bunches intersect with a “vertical1 crossing angle as indicated schematically 
in Fig. 4. Now when a particle of one beam transverses the bunch of the second 
beam, the mean transverse particle density it sees - and therefore, the probability 
of interaction - depends on the projected area of the opposite bunch. One might 
at first think that the area A of Eq. (1.2) should simply be replaced by the static 
projected area which would be the product of the beam width w by an effective 
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FIG. 4--Bunches colliding with a vertical crossing angle. 

projected height. Suppose that the vertical thickness of the ribbon is much less 
than the projected height; then the latter would be just the product of the beam 
length L and the crossing angle 26. However, the relative motion of the two bunches 
must be taken into account. When this is done, one finds that the proper projected 
height is one-half the product of the length and crossing angle, so that for an 
idealized ribbon-like beam we should in computing A of Eq. (1.2) take for the ef- 
fective height heff = 88. 

If we now take into account the Gaussian distribution of density of particles in 
the bunch in all three dimensions (using I to represent twice the rms longitudinal 
spread), and also the fact that, in general, both the beam thickness and the crossing 
angle will contribute to the projected height seen at the interaction, then the 
luminosity is correctly given by Eq. (1.4) also for a vertical crossing angle if we 
use for the area A the effective projected area 

with 

A d&h 
eff 4 eff (vertical crossing) . (l-5) 

h eff = (h2 + 1282)1’2 (l-6) 

It is also possible to arrange the storage ring orbits so that the beams will 
cross with a “horizontal” crossing angle as shown schematically in Fig. 5. Again 
the luminosity is given by Eq. (1.4) if for the area A one now uses the effective 
projected area 

Aeff =- 1 weffh (horizontal crossing) 
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FIG. 5--Bunches colliding with a horizontal crossing angle. 

with 

Weff = (w2 + P 2 21/2 6 ) (1.8) 
where 8 is now one-half the horizontal angle between the two beam trajectories. 

Finally we should take into account that the circulating beams may contain 
many separate bunches. Suppose that each beam consists of B identical bunches 
arranged so that each bunch of one beam encounters a bunch of the other beam as 
it transverses a specified region of intersection. See Fig. 6. Now let NI and N2 
be the total number of electrons in each beam, so that the number of electrons 
per bunch is NI/B in one beam and N2/B in the other. The contributy to the 
luminosity from-each pair of colliding bunches is then reduced by l/B , but there 
are B such pairs contributing, so the total luminosity at one interaction region is 
reduced only by the factor l/B below that for single bunch beams. I choose to 
include this effect by retaining Eq. (1.4) for the luminosity and absorbing the 
factor B into the definition of an “effective interaction area” of the intersection 
of the beams. 

A generalized luminosity formula may then be written as 

f NlN2 
cp = ;? Aint (1.9) 

(1.10) 
with 

A int = T BWeff heff 
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FIG. 6--Beam collision geometries with several circulating bunches. 

where for weff and heff we are-to use either w and h, or one of the expressions in 
Eq. (1.6) or Eq. (1.8) depending on whether there is a vertical or a horizontal 
crossing angle. 

It is often convenient in the storage ring business to characterize the intensity 
of a stored beam in terms of its electric current rather than in terms of the number 
of stored particles. The current I of a beam is defined as the mean rate at which 
electric charge passes any chosen point on the orbit. This current is related to 

N by 
I= Nef (1.11) 

with e the electronic charge. In terms of the beam currents the luminosity becomes 

c+L- Il12 
4e2f Aint 

(1.12) 

In what follows I shall find it more convenient to continue to use N, the number 
of stored particles, as a measure of the intensity of a stored beam, although from 
time-to-time referring to it loosely as the “beam current. ” 
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1.6. Beam Density Limitation 
Equation (1.9) would imply that the luminosity can be increased at will by 

increasing the number of particles in either or both beams. That the reality is 
otherwise was first pointed out by Amman and Ritson. 3 As the electrons of a 
beam traverse the interaction region their trajectories are disturbed by the macro- 
scopic electromagnetic field generated by the collective action of the electrons of 
the other beam. When these disturbances reach a certain strength they influence 
in an essential way the properties of the stored beams. In particular, they cause 
a dramatic growth in the beam area and corresponding decrease in the luminosity, 
which more than cancels the effect of any further increase in the current. I shall 
consider this effect in detail later (Section 2.13); for now I shall take into account 
the effects of this beam-beam interaction by making the assertion that the “effective 
transverse particle density” of a stored beam must be, at the interaction region, 
no larger than a certain critical value. Specifically, the effective transverse 
particle density D in a bunch, defined as the ratio of the number of stored electrons 
N to the effective area Aeff (at the interaction region), must not exceed a critical 
value D c. We must impose, then, the condition that 

N 
D=<<Dc (1.13) 

where DC is a number which is independent of the beam current, but is given in 
terms of the basic ring parameters - including the beam energy. 

A physical justification of Eq. (1.13) must be deferred until later. (See 
Section 2.12. ) It may be useful for now, however, to report here a formula for 

DC- 
I must emphasize, though,that the formulation I shall give is correct only for 

certain restrictions on the characteristics of the ring and its operation. Although 
most well-designed rings will satisfy these restrictions, the applicability of the 
formula should be confirmed for any particular case. With these cautionary 
admonitions I write that 

2*v ok 
DC = - 

rePV 
(1.14) 

where Au0 is the traditional notation for the ffmaximum linear tune shift” and 
stands for a number approximately equal to 0.025; y is the beam energy in units 
of the electron rest energy, re is the classical electron radius, and /$,, is the 
usual notation for a certain function (“the vertical betatron function” which describes 
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the focussing properties of the magnetic guide field) evaluated at the beam inter- 
section point. The function will be considered in detail in the next Part; for now 
the number p, may be crudely described as being proportional to the “sensitivity” 
of the electron trajectories to a transverse perturbation applied at the intersection 
point - a small /3, indicating a smaller effect for a fixed perturbation. Since p, 
is the only “free” parameter in Eq. (1.14), you will appreciate why so much 
attention is devoted to it in discussions of the designs of colliding beam storage 
rings. 

1.7. Maximum Luminosity 
The first consequence of the intensity limitation just described is that the 

maximum luminosity will always be reached when both stored beams are operated 
at the same maximum permissible current. (Requiring only that, as has been 
tacitly assumed until now, the two stored beams move in quite similar guide fields 
and so have the same area at the intersection. ) Say that one beam has more cur- 
rent than the other, and that the numbers of electrons of the “stronger” and 
“weaker” beams are N, and NW respectively. The density limitation will then 
apply only to the strong beam; if its current is as large as possible, we will have 
that 

NS - = DC A int 

and for the luminosity, using Eq. (1.9), that 

(1.15) 

(1.16) 

It is clear that the luminosity can always be increased by increasing NW - until, 
of course, it becomes as large as the number of electrons in the strong beam! 
The maximum luminosity will always be achieved when the transverse particle 
density in each beam is at the limiting value. 

I shall, from now on, assume that a storage ring is always operated with the 
same number N of stored electrons in each of the two beams. The luminosity 
formula, Eq. (1.9)) should then be written: 

0 
f N” 

g=z G (1.17) 
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And the maximum luminosity will be obtained when 

N 
A int 

= DC (1.18) 

I would like now to consider briefly some of the ways in which the limit on the 
luminosity of any particular storage ring may arise. 

Case 1: The effective area of the beams at the interaction is limited below 
some maximum value Amax’ and there is available sufficient beam current 
to reach the critical particle density. 

In this case we may always fill the storage ring to the critical particle number 
NC given by 

Nc = DcAint 
and the maximum luminosity will be 

9 =-fD2A 
1 4 c max 

(1.19) 

(1.20) 

Notice that in Case 1 the maximum luminosity does not depend explicitly on the 
number of stored particles available, but is, rather, directly proportional to the 
maximum available beam area; This behavior is usually characteristic of low- 
energy storage rings (or of high energy rings operated at low energy), and describes 
the behavior of all presently operating rings. The form of Eq. (1.20) makes clear 
why other reports give particular emphasis to the problem of controlling the ef- 
fective area of stored beams. 

I should point out that in interpreting Eq. (1.20) you should be careful to take 
into account the following considerations. For a given ring with fixed focussing 
properties and operated at a particular energy, DC is a fixed number. If the 
effective area is varied without changing the focussing properties of the ring, 
Eq. (1.19) shows properly the dependence of the luminosity on the area. However, 
in comparing two rings with different focussing properties, or the same ring withdif- 
ferent focussing conditions, it may be that both A,int and DC change together and 
the variation of the luminosity will then not be in direct proportion to the variation 
of Airit. Such complexities will be considered in some detail in a later section. 

I 

Case 2: The number of stored particles in the beams is limited (at a 
given energy) to some maximum value Nmax, and it is possible to adjust 
the effective area so as to reach the critical current density. 
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In this case the stored beams are filled to the intensity N,,, and the effective 
interaction area is adjusted to the value 

N 
AC=+=. 

C 

The maximum luminosity which can be achieved is then 

2z2 = i Dc Nmax’ 

(1.21) 

(1.22) 

It is proportional to the first power of the beam intensity and to DC, but does not 
depend explicitly on the beam area. Case 2 generally applies to high energy 
storage rings operated in their upper energy range. Clearly, the highest possible 
currents are desired, and if the highest luminosity is to be achieved it is necessary 
always to control the area to satisfy Eq. (1.21). 

Case 3: The particle number is limited to some value No, the effective 
area is limited above some minimum value Ao, and their ratio is less 
than the critical density DC. 

People generally try to avoid such circumstances in the design of a storage 
ring, but they may occur, for example, at the very highest operating energies of 
some rings. Then the limit on the current density plays no role, and the maximum 
attainable luminosity is just 

-NT 2 IY f 0 
g3=TAg 

(1.23) 

It varies as the square of the available current and inversely as the minimum area. 
The dependence of the luminosity on the significant parameters of the ring - 

particularly on the energy - is quite different in the three cases considered above, 
and is one of the mainconcerns of the remaining parts of this report. Before 
turning to such details, however, it will be useful to review briefly the factors 
which may determine the effective area of the beams at their intersection. 

1.8. Effective Interaction Area 
In Eq. (1.10) the effective interaction area was defined as the product of the 

number of bunches 2, with the projections of the beam width and the height - 
apart from the factor ?r/4. I wish now to consider how these factors may be 
determined for a “given7’ ring, by which I mean, here, one operated at a given 
energy and with all of the essential properties of the guide field held fixed. 
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As remarked earlier a stored bunch will, under stationary conditions, have 
a size set by quantum effects in the synchrotron radiation. In an ideal machine 
with a flat orbit such effects act directly to produce random radial oscillations 
and determine a %atural” or intrinsic beam width - which depends only on the 
electron energy and the focussing parameters. The width is typically about a 
millimeter. The direct quantum excitation of vertical oscillations is, on the other 
hand, very small, and is, in a practical machine, generally dominated by the 
coupling of energy from the horizontal to the vertical oscillations. Such coupling 
is due to the various small imperfections in a real storage ring, and it is generally 
presumed that the beam height can only with difficulty be made less than five to 
ten percent of the beam width. Often, coupling between radial and vertical oscil- 
lations may be intentionally augmented in order to increase the beam height as 
a way of increasing the beam area. (Such augmented coupling can be introduced 
by operating a ring so that there is a resonance - or near resonance - between 
the horizontal and vertical betatron frequencies, or by introducing a special 
coupling element such as a skew quadrupole. ) The maximum area is reached 
when the oscillations in the two coordinates are effectively equal - resulting in 
a large increase in the beam height-with only a small decrease in the beam width - 
so that the beam has a nearly circular cross section. t 

This technique has been used to increase the luminosity obtained from rings 
which fall in Case 1 of the preceding section - for example the ring AC0 at Orsay. 

Both the width and the height of a beam can, in principle, be increased by the 
artificial excitation of the betatron oscillations, although attempts to do so in AC0 
have not lead to the expected increase of luminosity. The possibility deserves 
more study, because if incoherent oscillations could conveniently be excited one 
would be able to increase the beam area to the maximum value set by the available 
aperture and obtain the largest possible luminosity for rings operated at low 
energies (Case 1). 

With beam intersection at an angle the crossing angle can be varied to obtain 
a desired effective beam area. With some rings, particularly with those in which 

t To be precise I should say that the number D may depend slightly on the form of 
the beam. It is generally independent of the ‘beam dimensions for a ribbon-shaped 
beam but may change by a factor of 2 if the beam section is made circular. See 
Section 2.13. 
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both beams (one electron and one positron) are stored in a common magnetic 
guide field - as in Adone - a continuous control of Aint may be obtained by a 
continuous variation of the vertical crossing angle at the intersection. 

It is, finally, clear that the effective interaction area can be adjusted by 
controlling B, the number of circulating bunches. Generally a ring is equipped 
with a radio-frequency accelerating system whose operating frequency is at some 
harmonic k of the rotation frequency f. Then k is also the maximum number of 
bunches which can be stored. By selective filling of the available bunch positions, 
however, the number B of stored bunches can also be made any integer less than 
k. So the range of possible values of B is 1 < B< k. This opportunity for control- 

ling Aint may, however, be of limited use if the selective partial filling of the 
bunches so reduces the filling efficiency that it decreases the total beam current 
that can be achieved. It may, however, offer the best alternative for achieving 
the optimum luminosity in high energy storage rings. 

Let me close this section by emphasizing an essential feature of the beam 
intensity limitation. The optimum luminosity condition depends on the geometrical 
parameters h, w, 6, and B only through a single number, the interaction area 
A int. I All methods? used to achieve a particular value of Aint are equally valid - 
and there is no fundamental reason to prefer one over the other. A wide flexibility 
is, therefore, available in the design and operation of storage rings. It is hoped 
that the formulation presented here will make clear how rings adopting different 
approaches are to be compared. 

This completes the Overview I wished to give of the physics of electron 
storage rings. I turn in the next part to a detailed, quantitative discussion of some 
of the basic phenomena which I have been able to describe only qualitatively until 
now. 

f Within certain wide limits. 
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II. THE BETATRON OSCILLATIONSt 

2.1. Coordinates of the Motion 
Electrons are held in a storage ring by the forces from the magnetic guide 

field. Magnets are disposed along an ideal orbit which is generally a smooth, -- 
roughly circular or racetrack shaped, closed curve. When the magnet currents 
are adjusted to any particular set of consistent values the designed fields are 
intended to be such that an electron of a nominal energy Eo, once properly started, 
will move forever along the ideal orbit. All other stored electrons are constrained 
by the guide field to move in quasi-periodic, stable trajectories in the neighbor- 
hood of the ideal orbit. tf The nature of these stable trajectories is the subject 
of this part. The treatment will, however, be limited to a so-called linear ap- 
proximation and will be applied only to electrons of constant energy, ignoring 
the effects of the radiation loss and the accelerating fields. Such effects will be 
taken into account later as perturbations of the idealized trajectories. 

In most rings the ideal orbit lies in a plane, and I shall limit the discussion 
to such cases; although the extension to the more general cases is relatively 
straightforward. The presentation will be simplified by presuming that the plane 
of the ideal orbit lies horizontal. ~’ 

It is convenient to describe the motion of an electron in terms of coordinates 
related to the ideal orbit. The instantaneous position of an electron will be specified 
by (s, x, z) where s is the distance along the ideal orbit from some arbitrary 
reference point to the point nearest the electron, and x and z are the horizontal 
and vertical distances from the ideal orbit. See Fig. 7. We may call s the 
azimuthal coordinate. The horizontal and vertical displacements are, of course, 
the displacements locally perpendicular to the design orbit. The positive sense 
of s will be taken in the sense of the electron’s motion, of x in the “outward” 
direction, and of z in the “upward” direction. I shall often refer to x as the radial 
coordinate. 

f Most of the ideas presented in this part will be found - although often in a different 
form - in the now classic paper, “Theory of the Alternating Gradient Synchrotron, ” 
by Courant and Snyder4 or in the book, “Accelerateurs Circulaires de Particules, ” 
by Bruck. 5 

ff I shall use consistently, the following terminology: a “trajectory” is any electron 
path; while an “orbit” is a particular trajectory which repeats itself on successive 
revolutions. 
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FIG. 7--Coordinates for describing the trajectories. 

The coordinates x and z will be considered as “small” quantities in the sense 
that they are assumed to be alw.ays -much less than the local radius of curvature 
of the trajectory, and that in considering variations of the magnetic guide field in 
the vicinity of the ideal orbit, only linear terms in x and z need be retained. These 
conditions define the linear approximation of our treatment. 

Because the design orbit is a closed curve, the azimuthal coordinate s is cyclic. 
That is, as s increases indefinitely the location in space repeats itself, repeating 
each time that s increases by the circumference of the orbit. Let’s call this cir- 
cumference L - and refer to it as the length of this design orbit. A physical 
location on the azimuth may be identified by s, or by s + L, or by s + 2L, and 
so on. It will from time to time be convenient to use in place of L an equal quantity 
2nR, where R is a kind of “effective radius” of the design orbit. It is common - 
though strictly improper - to speak of R as the “mean” radius of the ring. 

2.2. The Guide Field 
The guide field is taken to be static, so the motion of an electron is determined 

only by the magnetic field strength ff at each point of its trajectory. As the ideal 
orbit has been taken to be always horizontal, the field must be purely vertical 
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everywhere on that orbit. I shall make here a further assumption: that the design 
magnetic field is ideally symmetric with respect to the plane of the ideal orbit. 
Taking into account all of the assumptions so far deliniated, the magnetic guide 
field may be characterized completely by giving just two quantities for each 
azimuthal position s, namely, Be(s), the magnitude of the magnetic field on the 
ideal orbit, and (8B/8~)~~ the horizontal gradient of the field strength evaluated 
at the ideal orbit - that is, at x = 0 - for each azimuth. (Since the field is sym- 
metric with respect to the plane of the ideal orbit go and &/8x have only vertical 
components, and we need give only their magnitudes. ) As already mentioned, the 
field BO(s) produces the curvature of the ideal orbit; whereas the field gradient 
dB/dx gives rise to the focussing forces responsible for the stable trajectories 
near that orbit. 

The two transverse components of the magnetic field acting on an electron at 
(s, x, z) may now be written as 

BZ(s, x, 4 = BOW + (-$f) x; 
OS 

BX(s, x, z)? g os z . ( 1 

(2.1) 

(2.2) 

The last relation follows from Maxwell’s equations, which give, for fields with 
the symmetry imposed here, that aBx/Oz = dBZ/ax, And the linear approximation 
has, clearly, been evoked to permit dropping of any terms in the higher derivatives 
of the fields. The field components above are to be used to obtain the Lorentz 
force in the equations of motion of the electron. 

Storage rings are designed to operate over a range of electron energies. 
This is accomplished by arranging that all magnetic fields can be varied together - 
being scaled in proportion to the desired operating energy. Clearly if the mag- 
netic field on the design orbit is changed everywhere by the same factor the 
design orbit will again be a possible trajectory of an electron whose momentum 
is changed by the same factor. Varying all fields together merely changes the 
energy to be associated with the design orbit. For these reasons, it is convenient 
to specify the properties of the guide field in a manner which is independent of any 
selected operating energy, which is easily done by dividing all fields by a factor 
proportional to associated electron energy. I choose to define the (linear) 
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properties of the guide field by the two functions 

G(s) = 
ec BOW 

EO 
(2.3) 

(2 - 4) 

where E. is the nominal energy, c is the speed of light, and e is the electronic 
charge. 

Notice that these functions have a simple physical significance. We are here 
interested only in highly relativistic electrons for which E = cp; so G(s) is just 
the inverse of the radius of curvature p, of electron of the nominal energy at 
x = 0, z = 0. 

G(s) = es (2.5) 

We may, then, call G(s) the curvature function. The function Kl(s) is the rate of 
change of the inverse radius with radial displacement. 

The functions G(s) and K1(s) may be fairly arbitrary, but must satisfy a few 
important constraints. First, G(s) must be such that it does indeed define a 
closed orbit. (We may think that G defines the ideal orbit, or alternatively that 
some arbitrarily specified closed orbit defines G uniquely.) The change de0 in 
the direction of the tangent to the ideal orbit in an azimuthal interval ds is 

dOo= F = G(s) ds. 
S 

(2.6) 

The angle swept out in one revolution must be 2~; so G(s) must satisfy 

J 
L 
G(s) ds = 271.. 

0 
(2.7) 

Second, both G(s) and K1(s) are necessarily periodic functions of s, because the 
azimuthal coordinate s in physically cyclic - returning to the same point on the 
orbit after one revolution. We must have that 

G(s+L) = G(s) 

K1(s +L) = K1(s) (2.8) 

where L is the orbit length. Except for these constaints, G(s) and K1(s) may have 
more or less arbitrary variations with s. 
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Although the guide field functions G and K1 may, in principle, be quite general, 
it is often convenient to simplify the design or the operation of a storage ring by 
imposing certain restrictions on them. For example, most electron storage rings 
are designed to have the same orbit radius, say po, in all bending magnets - and 
with no bending at all in the intervening “straight sections” of the orbit. Such a 
guide field is called isomametic. The word is perhaps slightly misleading. What 
is intended is that the magnetic field on the design orbit has everywhere the same - 
value except where it is zero. Then G(s) is a dichotic function, taking on either 
the value Go or zero: 

Go = lho, in magnets 
G(s) = 0, elsewhere I 

(isomag). (2.9) 

A real guide field cannot, of course, ever be ideally isomagnetic, since it is 
physically impossible to have a discontinuous magnetic field. There must always 
be a transition zone at the edge of a magnet in which the field goes from zero to 
its nominal value. The idealized isomagnetic approximation is, however, generally 
quite adequate for most purposes. 

Although accelerators and storage rings are often built with bending magnets 
which have also radial gradients of the field, it is quite common nowadays to 
design separated function guide fields in which the focussing functions and bending 
functions are assigned to different magnetic elements. That is, the guide field 
consists of a sequence of flat bending magnets (with no gradient) and quadrupoles 
(with no field on the design orbit). I shall define a separated function guide field 
as one for which the functions G(s) and K1(s) are only separately different from 
zero. So that we have the condition that 

G(s)K(s)~ = 0 (sep funct). (2.10) 
One note of caution. It is sometimes convenient to design bending magnets 

whose pole faces are rectangular. With such a magnet, the design orbit must 
enter or leave the magnet at other than a right angle to the pole edge. (See Fig. 8. ) 
Even if the magnet is “flat” (no radial gradient in the magnet) there will be radial 
gradients at the edges, where the field is not zero. Equation (2.10) is not satisfied 
at the edges, and a guide field constructed of such rectangular magnets - together 
with quadrupoles - would not strictly satisfy my definition of “separated function, I’ 
although they are often referred to as such. Such guide fields may however, still 
be isomagnetic. 
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FIG. 8--Guide field with a rectangular magnet. 

2.3. Equations of Motion 
I would like now to write the equations of motion of an electron that is moving 

on a trajectory near the design orbit, and with an energy near, but not necessarily 
at, the design energy. I shall describe the energy of the electron in terms of the 
deviation f from the design energy Eo: 

$=E-E 0 (2.11) 

In keeping with our linear approximation I shall keep terms only to first order in 
the %mall” quantities x, z, and 6. Rather than using time as the independent 
variable it will be more convenient to use the azimuthal coordinate s. Derivatives 
with respect to s will be indicated by the f*primef’ (I); for example, x’ = dx/ds. 

Let’s begine with the radial motion. Think of an electron that is at x and 
moving with the slope x’. See Fig. 9. The slope x’ is the angle between the 
direction of motion of the electron and the tangent to the design orbit. Suppose 
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FIG. g--Electron trajectory near the design orbit. 

we call 8, the angle between the tangent and some arbitrary reference direction 
and 8 the angle made by the trajectory with the same reference direction. Then 
x’ = 8 - Oo; and 

xl’ = dW - 60) 
ds (2.12) 

The derivative of O. is, we have seen, just -l/ps = -G(s). But what is dO/ds? 
The radius of curvature of the trajectory is 

E 
P = ecB’ 

and in a path element de of the trajectory the change in angle is 

(2.13) 

(2.14) 
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Next, notice that so long as the angle xt is small - as I shall always assume’f - 

a path element d.Q of a trajectory at x is related to the corresponding change in 

s by 
ps+x 

de=p 
S 

ds = (l+Gx)ds. 

Next, we may write for B 

B=Bo+ Bxx= EO 
z (G + KIX) . 

(2.15) 

(2.16) 

Putting these two into (2.14) - together with E. +& for E - and keeping only 
first order terms, we find that 

de= -G- 
I 

(G2 + Kl)x + G(g/EO) ds. 
I 

And so we get from (2.12) that 

xl’ = - (G2+K1)x+ G($/EO) (2.17) 

The corresponding equation for the vertical motion is easier to derive; you 
can easily see that 

Z ” = K1z (2.18) 

Notice that with our linearized approximation, the motions in x and z are independent. 
For our consideration of the electron trajectories, I would like to use the 

standard form: 

x” = Kx(s)x + G(s) 5 , (2.19) 
0 

and 

z” = KZ(s) z, (2.20) 

f More rigorously, x1 will turn out to be proportional to x with a proportionality 
factor which is of the order of p. So long as we keep only terms to first order 
in x/p, Eq. (2.15) follows. 
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with the definitions : 

Kx(s) = -G2(s) - K1(s); (2.21) 

KZW = + KIW (2.22) 

The term corresponding to G2 is missing from Kz because of our assumption that 
the design orbit lies in a plane. f Storage rings are most often %trong focussing. I1 
For such rings G2 is generally much smaller than K1, so that Kx and KZ are ap- 
proximately equal and have opposite signs. 

The equation for the motion in z looks like the equation of a classical oscil- 
lator (force proportional to displacement) with a variable J*restoring-forcef* 
coefficient - the function Kz( s) . The equation in x is similar except that it has, 
in addition, a varying Wriving term If which is proportional to the energy deviation 
&. In useful guide fields the solutions are indeed oscillatory, and describe the 
lateral oscillations - including the so-called betatron oscillations - of the electron 
trajectories. These oscillations result from the focussing properties of the guide 
field which are characterized by focussing functions Kx and K . As we shall see Z 
later, the function G(s) enters as well in the energy focussing properties of the 
guide field. 

It is important to remember that all of the focussing functions are necessarily 
periodic in s, the minimum period being one revolution of the ideal orbit; that is, 
for both Kx and KZ (as well as for G) 

K(s+L) = K(s), (2.23) 

where L is the length of the ideal orbit. For convenience in construction - as 
well as in design - storage rings generaliy have also an inner periodicity. That 
is, they are made up,at least in part, of sequences of identical magnetic cells, 
each cell consisting of a prescribed set of magnets and quadrupoles. Then in a 

certain span of s, the focussing functions will satisfy 
G(s+lc) = G(s) 

K(s+Lc) = K(s) (2.24) 

f G2 is a centrifugal force term, and a corresponding term would appear in the 
z-motion if the orbit had hills and valleys. 
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where Ic is the cell length. Note, however, that while Eq. (2.23) is true for 
the actual fields of a ring - since when s is increased by L, the electron returns 
to the same physical point in the ring - the cell periodicity is a design property 
and will not be strictly true for the actual fields (due to construction imperfections). 

It will be useful to have in mind some illustrative example of a guide field. 
Let’s take the design of the proposed SLAC ring. 6 In it, most of the ring would 
consist of a repetition of a standard cell, each of which occupies about l/16 of a 
full circle. I show in Fig. 10, the nature of the focussing functions over a part 

L------ I 
I CELL- 

I I 

‘FBDBF IFBDBFIF 

I I I I 
IIIIIIIIIIIII~ S 

0 2 4 6 8 IO 12 14 16 18 20 22 24 
meters 

l;-~--~-------~-~---IIs 

FIG. lo--Magnet lattice and focussing functions in the normal cells 
of a particular guide field. 

of the ring, comprising two such cells. Part (a) of the figure shows the layout of 
bending magnets and quadrupoles. The bending magnets designated B, have a 
uniform field (dB/dx = 0) ; the quadrupoles have no field on the design orbit ( Bo= 0) 
and are designated F or D (for focussing or defocussing in the radial motion) 
depending on whether their gradients are positive or negative. The other parts of 
the figure give the focussing functions G, Kx, and KZ. 

2.4. Separation of the Radial Motion 
It is conceptually convenient to separate the radial motion into two parts, 

one part being a displaced, closed curve, which is the equilibrium orbit for electrons 
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of the displaced energy, and the other part being the free transverse oscillation 
about this orbit. Suppose we write for x 

x=xc+x 
P 

(2.25) 

then certainly Eq. (2.19) is satisfied if both of the following equations are true: 

x:’ = Kx( s) xe + G(s) & (2.26) 
0 

x” = E K (s) x 
x P 

(2.27) 

We may make the decomposition unique by requiring that xc(s) be a single-valued 
function at each physical azimuth; that is, that x (s) be a function which is periodic 
in s with period L. It is then clear that xc(s) is a possible (and in fact, unique) 
closed orbit for an electron of energy E. + & (with x 

P 
= 0), and that the general 

radial motion will consist of the sum of the displacement of this new equilibrium 
orbit and a free betatron oscillation xP which satisfies Eq. (2.2%). 

The displacement xe is proportional to the energy deviation ;. Let’s write 

x&q = T(S) f- ' 
0 

(2.28) 

Now q(s) is the single-valued function which satisfies 

7” = Kx(s)r] + G(s). 

And the total displacement from the ideal orbit can be written 

(2.29) 

x = T/(s) & + x 
0 P 

(2.30) 

I shall call r)(s) the off-energy function; it is a unique particular solution of 
Eq. (2.29) (because of the required periodicity) and is therefore, a function which 
characterizes the total guide field. It will be studied in more detail later on. 

2.5. Betatron Trajectories 
Equations (2.20) and (2.27) describe the free vertical and radial betatron 

oscillations. With the approximations made, the motions in the two coordinates 
are independent. Since the two equations have the same mathematical form - 
although the functions KZ(s) and Kx(s) will generally be different - let’s take as 
the representative form 

x” = K(s) x (2.31) 
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which is the same as Eq. (2.27) with the subscripts p and x suppressed. (With 
K(s) = Kx(s), Eq. (2.31) will describe the radial betatron oscillation of an electron 
of the nominal energy Eo, * and with z substituted for x and with K(s) = KZ(s), it 
will describe the vertical motion. ) 

The focussing function K(s) is a prescribed function - the storage ring design 
specifies its value at each azimuthal position. If the position and slope (x and x’) 
of an electron are given for some azimuth, the subsequent motion is uniquely 
determined. It can in fact be determined by a direct numerical integration of 
Eq. (2.31). Generally, however, the guide field is constructed of magnetic seg- 
ments, in each of which K(s) may be taken as a constant so that the integration can 
be made algebraically for each segment and the motion can be pieced together 
from such solutions. Depending on whether the value of K is positive, zero, or 
negative in a particular segment of s, the motion in x will have one of the 

forms 
K>O: x=acos fis+b 

( > 
K=O: x=as+b 

K< 0: x= acosh t fl s+b ) 
(2.32) 

where 2 and & are constants in each segment - and may be determined from the 
values of x and x1 at the entrance to the segment. (Since K is everywhere finite, 
x and x’ must both be everywhere continuous - and,in particular, at the boundary 
between the two segments. ) 

As an illustration suppose we consider the motion for a K(s) like that shown 
for Kx(s) in Fig. 10. Two possible trajectories are shown in (b) of Fig. 11. The 

first one is a trajectory which starts at so with a unit displacement (x0 = 1) but 
no slope (XL = 0) ., - and the second starts at so with zero displacement but with a 
unit slope (x b = 1). Each of them is made up of pieces described by one of the 
functions in (2.32). There are, of course, an infinite number of possible trajectories, 
depending on the initial conditions at so, * but the two shown are of particular 
interest. The first one is called (for any chosen so) the “cosine-like” trajectory 
associated with so and is designated C(s, so); the other one is the “sine-like” 
trajectory S(s, so). 
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FIG. 11--Focussing function K(s) and two trajectories: the cosine-like 
trajectory and the sine-like trajectory for the starting azimuth so. 

The detailed form of C and of S will depend on the reference azimuth so. They 

are in general, not periodic functions, even though K(s) is. For a ring with stable 
trajectories, C and S are bounded oscillatory functions which have a different shape 
on each successive revolution of the ring; although they are fquasi-periodic” in 
the sense that after some number of revolutions they will lie very close (or in 
some hypothetical cases even exactly on) the trajectory of an earlier revolution. 

Now since Eq. (2.31) is linear in x, any linear combination of C and S will 
also describe a possible trajectory; and more particularly, all possible trajectories 
can be described by such a linear combination. That is, for any trajectory 

x(s) = C(s, so)xo + S(s, SO)Xb (2.33) 

and 

x’(s) = C’(s, so)xo + S’(s, SO)Xb (2.34) 

where C’ and S are the derivations of C and S with respect to s; and x0 and xb 
are the value of x and xl at so. 

It is often convenient to write the last two equations in a matrix notation. 
Let’s let $ s) stand for the “Vector” whose components are x(s) and x’(s); 

x(s) 4w = xt(s) [ 3 (2.35) 
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Then we may write that 

$s) = Jgls, so) &so) (2.36) 

in which 2 is the transfer matrix to s from so, which depends only on the properties 
of the guide field between the two azimuths. Its elements can be written in terms 
of the cosine-like and sine-like functions: 

p, “0) = 
(7% “01 

I 

St% “0) 

C’(s, “0) 1 ws, soI (2.37) 

The transfer matrix for any span of s can often be conveniently found in terms of 
the matrices for segments of the span, since for any SI between so and s, 

&ztss so) = Jp, q Jgs,, so> (2.38) 

The matrix for a segment which extends from sI to s2 = sI + d with a constant K 
is given in Table I for the three cases; K < 0, K = 0, and K > 0. They may be 
derived from the equations in (2.32). 

The transfer matrix method is useful when designing a ring, or in looking 
at special problems such as the initial trajectories at injection. It does not, 
however, provide the most convenient description of the general nature of the 
trajectories of stored electrons. For many purposes another method of describing 
the trajectories is more useful. It may be called the ‘pseudo-harmonic” 
description. 

TA.BLE I 
Transfer Matrices for Segments of Constant K 

K < 0: 

K = 0: 

K > 0: 

1 
cos JKP 

g&l, Sl) = 
L - JK sin Ke 

3”2, Sl) = 

r cash -1 

g<sp q = 
Gsinh FKQ 

h sin fi I 

cos Kn ll--- 1 Q 
1 1 

1 
7 

-K sinh -1 

cash &i?1 . 

I = s2 - s1 
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The general solutions of Eq. (2.31) can be written as 
x(s) = a 6(s) cos j+(s) - 81 (2.39) 

where c(s) and G(s) are specially defined functions of s with certain convenient 
properties and a and 8 are constants (“initial conditions”) which determine a 

Particular trajectory. t Specifically, if we defineff 

f$(s) q” + 
0 5 (3 

(2.40) 

so that 

@J’(s) = -j , (2.41) 

and if we define c(s) to be that positive valued, analytic function which satisfies 

5” = K(s)5 + 1 , 
5” 

(2.42) 

then, as you can show by direct substitution, the x(s) of Eq. (2.39) satisfies the 
differential equation (2.31). 

Following tradition, I shall choose generally to deal rather than with c(s), 
with its square - which is universally written as p(s). With this translation 
Eq. (2.39) gets replaced by 

x(s) = a l/m cos {w -81 (2.43) 
with 

’ dg d(s)=& pjq (2.44) 

and 

P(s) = c2w (2.45) 

so that m is the function defined by Eq. (2.42). 
Given the focussing function K(s) for a storage ring, the function p(s) is 

uniquely determined; it can therefore, serve as an alternate “representation” of 

‘Note that 8 does not refer to the value of G(s) at s = 0 since e(O) = 0. 
f f To avoid confusion when writing indefinite integrals over s, I shall write the 
’ integration variable or Z. 
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the focussing characteristics of the ring. Notice, however, that while K(s) is 
given in terms of the local properties (at each s) of the guide field, the function 

P(s) - or hs, - depends on the total configuration of the ring. On the other hand 
once p(s) is known, K(s) can be immediately obtained from its local derivatives 
by Eqs. (2.42) and (2.45). But it is p(s) which reveals more directly the signifi- 
cant characteristics of the trajectories of stored electrons. 

It is possible to have guide fields that do not result in stable (that is, bounded) 
trajectories. For such fields p(s) is not defined. But such fields can hardly be 
said to form a 1’storage?9 ring; so we are not interested in them here. Although 
they may be of interest to the storage ring designer - as something to be avoided! 

I will return later to a discussion of how p(s) is related to the guide field prop- 
erties; but it will be more useful to look first at the qualities of the trajectories 
described by the pseudo-harmonic solutions described by Eq. (2.43). 

Don’t forget that all of the discussion of this section applies equally to vertical 
as well as to radial motion. A ring is therefore, described by the s functions 
p, and P, (or f, and g,), which are derived from the two focussing functions Kx 
and KZ . It follows that the phase function G(s) is also different for motion in x 
and in z. 

2.6. Pseudo-Harmonic Betatron Oscillations 
We have seen that the betatron oscillations - in either x or z - are described 

by a pseudo-harmonic oscillation whose representative form is 
x(s) = a Jp cos($ - 8) (2.46) 

(2.47) 

where p is a given function of s, which we may call the betatron function, and a 
and 8 are constants of the particular trajectory. f‘ The two equations above 
describe completely the & taken by the electron. To get a complete picture of 
the motion of the electron in the coordinate x we must only add the fact that the 

f You may be wondering why I have not adopted the imaginary exponential notation 
for representing the betatron oscillation. Such a representation is, of course, 
possible; but in the present instance the inconvenience seems generally to outweigh 
the convenience gained. 
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electron travels always at the speed c of light. For many purposes it is adequate 
to take that the azimuth of the electron varies simply as 

s = so + ct (approx) (2.48) 

You should remember, however, that this is only an approximation which neglects 
terms that are the order of X/P s, where p, is the radius of curvature of the design 
orbit. The correction terms to Eq. (2.48) will be looked at in Section 3.2. 

The betatron function describes completely the lateral focussing properties 
of the guide field. By its nature the betatron function must be always positive- 
definite; it has a “wave-like” character, and in a well-designed ring it will wander 
not too far (say a fraction of an order-of-magnitude) from its mean value. It 
might typically look like the curve (a) in Fig. 12. The definition of p(s) constrains 
it to be periodic in s with the period L; 

P(s + L) = P(s). (2.49) 
It has a unique value at each physical azimuth. If the guide field has a higher 
rotational symmetry - being composed of two or more identical periods - @ will 
have the same symmetry. A guide field which produces the p of Fig. 10(a) would 
have sixteen identical cells in its circumference. Note, however, that a local 
periodieity in the focussing functions G(s) and K(s) in only a part of the guide field 
will not, in general, give rise to a corresponding local periodicity in p. It will 
do so only when the local periodicity is repeated all the way around the ring to 
produce a true rotational symmetry. 

As the electron travels around the ring it executes a lateral oscillation which 
is not harmonic - nor periodic. The motion is a kind of distorted sine-wave with 
a varying amplitude (a@) which is modulated in proportion to the root of the beta- 
tron function, and with a “phase” (c$ - 8) which advances with s at a varying rate 
proportional to l/p. The nature of themotion is illustrated in parts (b) and (c) of 
Fig. 12. The two segments of trajectory shown correspond to the same 2, but to 
different starting phases. 

Suppose that we chose some initial 2 and 9, and follow the trajectory for many 
successive revolutions. We would get a path such as the one shown in part (d) of 
Fig. 12, where, for convenience, I have superimposed all of the successive revolu- 
tions on the same segment of s. (Or, if you wish, since s is a cyclic variable, I 
am plotting s(modulo L) instead of s.) The picture gives some idea of what we 
would see if we watched a single stored electron circulating in a ring. 
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One important feature of the betatron motion is evident in Fig. 12(d) - at 
each physical azimuth the displacement x of a circulating electron lies always 
below a limiting extreme value X(s) obtained by setting cos (@ - 9) = 1; namely 

X(s) = aJFi3 (2.50) 

The complete trajectory of a stored electron will fall forever within an envelope 
defined by i X(s) . And it follows that the aperture required to contain an electron 
with a given oscillation amplitude varies around the ring as X(s). The ratio of 
the envelope width at two locations sl and s2 is, of course, just 

x2 p2 
l/2 

-= - 
0 x1 Pl 

(2.51) 

At each physical azimuth a stored electron may generally be expected to pass 
frequently with a displacement near the maximum. 

Let’s look now at the slope of the betatron trajectory, x’ = dx/ds. Taking the 
derivative of Eq. (2.46)) we may write 

x’=- 5 P’ sin ($I - 79) + 2p X (2.52) 

The first term comes from the changing phase; and the second from the variation 
of@. 

Notice that the zeros of x’ - and therefore, the peak values of x - do not 
occur when cos( C#I - 9) is 1. Rather they are reached when 

tan ($ - 8) = PI/2 (2.53) 
which means at 

If the peak of a particular cycle of an oscillation occurs at some s, the peak dis- 
placement then will be 

Xpeak = aJo+ 4 [ 1 8’2 -m 
(2.55) 

See. Fig. 13. 
In a classical harmonic oscillation the amplitude is an invariant of the motion. 

Its square is proportional to the energy of the oscillator, and can be expressed as 
a quadratic function of the instantaneous position and velocity. The corresponding 
invariant of the pseudo-harmonic oscillator is the constant a. - 
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FIG. 13--The maximum of a particular cycle of a betatron oscillation. 

If we isolate the cosine and sine terms in Eqs. (2.46) and (2.52), square 
them, and add, we can relate a2 to x and x1. We find that 

a2 = $ +p(x’ - $jxr. (2.56) 

If we know x and x1 at any azimuth, say sI, _ a can be found and all subsequent dis- 

placements can be expressed by 

l lx2 +(p,3 - f$yy’2&3cos(, -0) “=K\ l (2.57) 

The phase constant 8 must also be determined from x and x’. It can be obtained 

from 
h”i + P; tan(@I -6) = - - 
x1 2 ’ (2.58) 

where $I = $(s,). 
We are often interested only in the maximum value X(s) which can be reached 

at any physical azimuth on any subsequent revolution. This maximum is independent 

of 9 and is obtained by replacing the cosine factor of Eq. (2.57) by 1: 

X(s) = & (Xt+(p1Xi- Fr/l”JBTs) (2.59) 
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If p were everywhere comparable - say not too far from some typical value 

Pn- then the ensuing peak amplitude which would result from a sudden lateral 
displacement 6x would be about equal to 6x, and the amplitude which would result 
from a sudden lateral impulse that changed the slope by 6x1 would be about pro- 
portional to p,Sx’. Generally, we may expect that the amplitudes which result 
from disturbances to the trajectory will be less the smaller is /3. Indeed, we may 
consider that l/p is a measure of the “strength” of the lateral focussing, and that 
small values of p are generally desirable. More will be said on this subject later. 

2.7. The Betatron Number v 
As an electron makes one complete revolution of a storage ring starting at 

some azimuth, say so, its oscillation phase (@ - i+) advances by 

Because of the periodicity of p, this integral is the same for all so: in any complete ---- 
revolution the phase increases by the same amount. This phase advance is an impor- 
tant parameter of a storage ring and is usually written as 27rv (although in Europe 
often 2rQ); and v is called the betatron number. We have the definition 

1 
s 

s+L dG 
u=zT s 

+)y ff- (2.60) 

(I shall use from now on the complete integral symbol f to indicate any integral 
around the whole ring. ) The betatron numbers for the two oscillation coordinates 
x and z - written as I”~ and vz - are generally different, being derived from the 
two betatron functions p, and p,. Both vx and v z are typically not-too-large 
numbers near, but not at a quarter integer - such as 2.78 or 5.15. Other ways 
of calculating u will be treated in Section 2.10. 

Although the betatron trajectory is a contorted aperiodic oscillation, if we sit 
at some particular azimuth and observe the successive passages of a stored electron 
we find that the displacement follow a simple sinusoidal law. Suppose we pick our 
observation point at so, and let the successive passages past this azimuth be 
identified by the index j = 0, 1, 2, 3, . . . Also let q. be the phase at the zero-th 
passage. On each successive passage the phase will increase by 27~~; at the j-th 
passage the phase will be 

2wj + e. . 
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and the displacement will be 

xj = a 4 cos(2rvj + 9,) (2.61) 

The “amplitude” factor (afld is a constant (PO = &so)), so the displacement, as 
sampled each revolution, varies as the sampling of a simple sinusoidal oscillation. 

Since the time for each revolution is constant, f namely L/c, we may also 
write that the time tj of the j-th passage is 

or that 

where 

2?rj = w t. , 
rJ 

w /=2rt, (2.63) 

(2.62) 

is the (angular) frequency of revolution of the electron. Then (2.61) becomes, 
for any fixed s, 

xs(tj) = a JF@ cos(uOrtj + ‘$0,) (2.64) 

When observed at a particular azimuth the lateral motion is indistinguishable from 
a sampled simple harmonic oscillation at the frequency uor - generally called the 
betatron frequency. 

Looking at Eq. (2.61) we can see the justification for the statement of the 
preceding section that at each azimuth we may sooner-or-later expect to see x 
take on its maximum value X(s) = a,@@. Unless u is an integer, or better, 
unless the difference between u and an integer is a simple fraction - which is 
not likely to be exactly true for a real storage ring - the phase (modulo 2n) at 
successive passages of any fixed point will r’walkl’ through a large number of 
values between 0 and 27~ before repeating -itself. And the displacement will sooner- 
or-later take on its peak value X at, or near,each azimuth. 

Perhaps the most important significance of the betatron number u of a storage 
ring is related to the existance of disturbing resonances which appear if u takes 

f Neglecting a small correction proportional to x. 
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on certain values. For example, if u were an integer, the betatron oscillation 
would ideally become quite periodic - repeating itself each revolution. However, 
the smallest imperfection in the guide field (and there will surely be at least one!) 
will act as a perturbation which is synchronous with the oscillation frequency. A 
synchronous perturbation leads to a resonance excitation of the oscillations and 
an exponential growth of the amplitude. There will be no stable oscillation. (Said 
in another way, the betatron function of the actual machine may not be defined. ) 
As we shall see later, other resonances will occur also at half-integral values of 
u; or if nonlinear effects are taken into account when the difference between u and 
an integer is any simple fraction. 

Resonances must, of course, be avoided in both the radial and vertical betatron 
oscillations. It turns out that resonances of some kind may occur when ux and 
uz satisfy 

mux + nuz = r, (2.65) 

where m, n, and r are integers. Significant effects are generally observed only 
for low-order resonances, that is, those for which m, n, r take on the small values 
0, 1, 2, 3. The operating point of a storage ring is specified by giving both ux 
and uz and must be chosen to avoid the serious resonances. The resonance relation 
(2.65) defines a set of lines in a (ux, uz) diagram. Some of them are shown in 
Fig. 14, where a possible operating point is also indicated. For one particular set 

n+ I 

n-l 

n-l n VX n+l 

1bll.l. 

FIG. 14--Lower order resonance lives on a ux, uz diagram. 
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of resonances, namely when ux is equal to uz or when their difference in integer, 
there will be strong coupling between the horizontal and vertical oscillations. At 
such a resonance our assumption of completely independent oscillations is no 
longer valid and the motion will be more complicated. Sometimes a storage ring 
may intentionally be operated on or near such a coupling resonance in order to 
increase the amplitude of vertical oscillations by feeding them energy from the 
radial oscillation. 

To stay clear of dangerous resonances it is necessary that the actual operating 
point remain fairly close to the chosen one - as is clear from Fig. 14. We may 
expect that magnet imperfections will generally cause shifts of u which are pro- 
protional to u itself. A storage ring with a large betatron number is likely to be 
a “touchy” machine. This is one of the reasons that designers tend to choose u 
values between about 2 and 6. 

2.8. An Approximate Description of Ektatron Oscillations 
For many purposes it is convenient - and sufficient - to approximate the 

betatron motion by a simple harmonic oscillation. Consider the oscillation 

x F A cos(s/X - 9) (2.66) 

where X is a constant (the “reduced wavelength”). One complete oscillation is 
completed while s advances by one wavelength 2r5. It is clearly convenient to 
think of the pseudo-harmonic oscillation of Eq. (2.46) as merely a %ine”-wave 
with a locally varying reduced wavelength - if we may ignore the amplitude vari- 
ation. And, so long as p doesn’t vary too wildly, we might expect to have a 
reasonable approximation to the actual motion if we use the form of Eq. (2.66) 
with a suitable choice for %. Suppose we define the number p, to be that constant 
which would give the same phase change (2.47) in one revolution as does the actual 
p. That is, we define p, by 

4 7=t (2.67) 

and call it the typical value of /3. Then the oscillation 
x = A cos(s/& +0) (2.68) 

will - with A = a fin - agree with the actual trajectory at least once each revo- 
lution; and, in particular, will on the average stay in phase with the true oscillation. 
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I show in Fig. 15 one of the trajectories of Fig. 12 together with the approximation 
obtained from Eq. (2.68); for many purposes the approximation is quite adequate. f 

BETATRON TRAJECTORY BETATRON TRAJECTORY 

APPROXIMATE SINUSOID APPROXIMATE SINUSOID 

t=---- 2TTpn ---! 
1632A15 

FIG. 15--Approximation to the betatron trajectory. 

It is convenient to remember that, by (2.67), l/p, is just the average around 
the ring of l/p: 

Recalling the definition of u from Eq. (2.60) we may also write 

People commonly define the gross radius R of a ring by 
2nR=L 

(2.69) 

(2.70) 

(2.71) 

f When using the approximation of Eq. (2.68), it becomes generally convenient to 
revert to the usual exponential representatjon of the cosine function. 
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then p, is most simply defined by 

p,=+ (2.72) 

(Note that P, is not equal to the average of ,Q although it may not be much different 
if the undulations of p are not too large. ) 

The time-variation of the approximate trajectory of Eq. (2.68) is simply 
written as _’ 

x = A cos (vw,t - 0) (2.73) 

as follows by using (2.78) together with the definition of wr as c/R. The angular 
frequency VC+ is usually referred to as the %etatron frequency” and will be written 
w 

P 
. Notice that when the approximate trajectory is observed only as it passes some 

one fixed azimuth, its time variation is indistinguishable from the actual one - 
compare Eq. (2.64). 

The approximate description of this Section is not only entirely adequate for 
many calculations of storage ring effects, but indeed provides the only tractable 
approach for an analysis of some of the coherent effects which involve large numbers 
of stored electrons. 

2.9. Nature of the Betatron Function 
The storage-ring designer is very much occupied with finding a magnet design 

which will provide a suitable betatron function p(s). And a user may generally 
expect that along with the design of the ring will come a plot of that function. I do 
not wish here to go into the intricate matter of the techniques for arriving at a 
design which will yield a r’good’* p(s), but rather I would like only to give some idea 
about how /3(s) may be evaluated for a given set of magnet parameters. 

What is a desirable form for p(s) ? We have already seen at the end of Section 
2.7 that at least in certain respects, timall values of p (strong focussing) are 
desirable - provided that p is reasonably uniform. Unfortunately, small p’s can 
only be obtained with alternating gradient focussing which tends to give reasonably 
large undulations to p. Also, smaller p’s imply larger values of V, which may, 
as remarked in Section 2.8, lead to greater difficulties from resonances. One 
normally tries to arrive at a /3 whose typical value in most of the ring is some 
fraction (l/2 to l/6) of the mean radius R, and which does not have too extreme 
an undulation. 
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In Section 2.6 the betatron function p(s) was defined as that single-valued 
continuous function whose square root t(s) satisfies 

5” = K(s)< + 1 
t3 

(2.74) 

where K(s) is the magnet focussing function. The typical modern storage ring is 
made up of a chain of segments in each of which the function K(s) has a constant 
value, positive, negative, or zero. An example was given in Fig. 11(a), with the 
corresponding p = <’ shown in Fig. 12(a). 

The requirement that c(s) be periodic, together with the nonlinear term l/c3, 
gives a unique specification - including the scale. The function [(s) is the “eigne- 
function” of Eq. (2.74) and because of the nonlinearity, there is no arbitrary 
normalization of the amplitude. 

From a dimensional argument we would expect that f should scale as IKI -l/4 , 
or that p should scale (KI-1’2. (Recalling that l/p is like the “frequency” of an 
oscillator we might expect it to go as the root of the “restoring force constant”.) 
For a given geometry of the field, such a scaling law is roughly true. It is in fact, 
strictly true if the scale length of the focussing geometry is scaled as /q-1’2, as 
would generally be true for a well-designed guide field. 

In a region of s where K(s) is a constant Eq. (2.74) has just the form of the 
one-dimensional equation of motion of a particle being acted on by a linear “restoring” 
force -K 5 and a “repulsive core” force 1/t3. Or if you prefer, of a particle which 
moves with a potential energy proportional to 

-Kt2 + -+ . 
t 

(The second term is much like a “centrifugal barrier”!) The shape of the effective 
potential is shown in Fig. 16 for K > 0, K = 0, and K < 0. In any region where 
K 2 0 the acceleration in 5 (the displacement of the model particle) is always posi- 
tive; and 5 is driven always toward larger values - or, of course, turned around 
if it has an initial velocity toward the origin of t[. For positive K the driving force 
is, at large 5, proportional to the size of K. On the other hand, in any region 
where K < 0 there will be a nice stable potential well, and when 5 is large, there 
is always a “force” driving it toward the origin. 
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V \ \ \ \ 1 \’ ./‘L-c, --5 

FIG. 16--Effective ‘potential” functions for 5. 

It is also qualitatively apparent that there may exist lfstablell solutions for which 
c(s) enters a region of K > 0 moving inward (toward the origin) and is turned around 
by the “repulsion” only to be sent back inward again by the “attractive’l force in a 
later region where K < 0. For a periodic K(s) like that in Fig. 17(a), we must 

(a) 
K(s) 

I 

(b) 
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FIG. l7--Form of the function c(s) with a periodic focussing function K(s). 

expect a solution t(s) like the one sketched in part (b). The solution exhibits an 

important general characteristic of the function s(s): its maxima occur in focussing 
sections - one where K < 0 - and its minima occur in defocussing or neutral 
sections - where K L 0. 
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It is also clear that, for a given spacing of the segments of different K values, 
if the magnitude of K is scaled upward, the amplitude of the undulations will grow 
rapidly larger. Less apparent - and left as a point to ponder - is the fact that 
as the scale of K is increased a situation will be eventually reached for which a 
11stable7’ - i.e., periodic - solution no longer exists for c(s). So the strength of 
the focussing (magnitude of K) and the element spacing must be adjusted together 
in playing with a storage ring lattice (a word used to indicate the geometry of the 
segments). 

You may be tempted to wonder: Why not just have K < 0 at all s? Clearly 
the stability of c(s) is then guaranteed. ” But don’t forget that when K is negative 
for one coordinate of lateral motion in the storage ring - say x - then the K for 
the other coordinate - z - is positive, and vice versa. Recall Eqs. (2.21) and 
(2.22). The need for an alternating gradient is clear. 

It should also be now apparent that the undulations of 5(s) - and so also of 

P(s) - will be “out-of-phase” in the two coordinates x and z, the < for one being at 
its maximum where the 5 for the other is at its minimum. 

The out-of-phase behavior is quite general - even for rather complicated 
focussing lattices - although it will not generally be true that the t,(s) and t,(s) 
are entirely similar in shape. In Fig. 18 I show the two functions 5, and 5, for 
the periodic -lattice of Fig. 10. 

5 

0 2 4 6 8 IO 12 
meters 1.11111 

FIG. 18--The functions 5x and 5, for the guide field of Fig. 10. 
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It is instructive to relate the betatron function p(s) to the sine-like trajectories 
which were defined in Section 2.6. The sine-like trajectory S(s, so) associated 

with the azimuth so is that trajectory which starts at so with zero displacement 
and unit slope. It can be expressed in terms of the pseudo-harmonic oscillation 
Eq. (2.46) by setting a = mo) and a= n/2 - @(so); 

’ dB 
s(s, so) = GGJRG sin J - (2.75) 

(You can check that S(so, so) = 0, and S1(so, so) = 1. ) Now consider what happens 
if we follow this sine-like trajectory for one complete revolution - that is to 
s = so + L. The integral becomes, by Eq. (2.60) just 27rv. Because of the period- 
icity of the betatron function, &so + L) = p(s,). So 

S(so + L, so) = p(s,) sin 2Tv, (2.76) 

which - since v is independent of so - I can also write as 

P(s) = * (2.77) 

The betatron-function at s is, within a constant, just the displacement after one 
revolution of the sine-like trajectory which starts at s. See Fig. 19. 

I 

SO sol+L 
+ I REVOLUTION -----+ 1e11.19 

FIG. 19--Relation between S(s, so) and @(so). 

We now have another prescription for finding /3(s). One needs only calculate 
directly the sine-like trajectory after one revolution, starting at each s. The 
displacements obtained are proportional to p(s). There is left only to determine 
the %ormalization7f factor 1/2av. Using the definition of u, Eq. (2.60) together 
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with Eq. (2.77), you can see that v can be obtained as the solution of the tran- 
scendental equation 

27w 4 ds = 
sin 27W S(s+L, s) (2.78) 

So, given S(s+L, s) for all s, we can determine uniquely p(s). 
The calculation of S(s +L, s) can be carried out by a straightforward numerical 

integration of the equations of motion. Or, for a piece-wise-uniform guide field, 
it is conveniently obtained by using the matrix method described in Section 2.5. 
Recalling Eq. (2.37), the sine-like trajectory from so to so + L is just the upper 
right element of the transfer matrix JvI(s, so) for the complete machine starting 
at each azimuth so. 

It can also be shown - but I shall not stop to do so - that v can be obtained 
from the trace of the matrix for the complete ring. Namely 

cos 27rv = i Tr lU(s+L, s) = i C(s+L, s)+S’(s+L, s) 
> 

where C is the cosine-like function. So if C and S are calculated as well as S, 
v can be determined and Eq. (2.77) will give P(s) directly. 

Although I have thought it more convenient to write the differential equation 
for /3 in terms- of its square root 5, one can, of course, write one in terms of P 
directly. Equation (2.74) can be rewritten as 

;,,ll - ;p’” + K(s)p2 = 1 (2.80) 

The form is clearly less convenient. I may, however, use it to make the following 
observations. 

In a field free segment of the guide field K(s) = 0, and the solution to Eq. (2.80) 
is 

(2.81) 

where so and PO are suitable constants. If p has a minimum in the field free seg- 
ment then PO and so are the values of p and s at the minimum. Generally, the 
intersection of two colliding beams occurs at a symmetry point where /3 must be 
a minimum. Then Eq. (2.81) gives the form of p(s) in the vicinity of the inter- 
section. Its form is illustrated in Fig. 20. Notice that the coefficient of the 
quadratic term is just the inverse of the value of /3 at the minimum - the smaller 
is PO, the more rapid the increase of /3 with increasing distance from the minimum. 
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FIG. 20--Variation of p near the minimum that occurs in a long 
field free region. 

Finally, observe that in a segment in which K is large and pt is not, Eq. (2.80) 
can be approximated by 

p = 4Kp (2.82) 

Then ,l3 is a sinusoid or an exponential depending on the sign of K. 

2.10. Disturbed Closed Orbits 
Until now I have considered the trajectories of electrons in a prescribed 

guide field. I wish next to consider the following question: Suppose we have 
analyzed the electron trajectories for this prescribed field; how will the trajectories 
be different if there are small deviations of the fields from the assumed prescrip- 
tion? In our linear approximation, the prescribed - or nominal - guide field was 
specified by giving its value on the ideal orbit and its radial derivative. See 
Section 2.3. Also, it was assumed that the field at the ideal orbit was everywhere 
vertical. I wish now to inquire about the effects of small deviations from the 
nominal field. If the vertical magnetic field at the ideal orbit differs from its 
nominal value, or if there is some small horizontal field, the lateral accelerations 
will be different from what is necessary to keep an electron on the design orbit. 
The deviations of the field at the design orbit will be called field errors. Changes 
in the fields which cause the focussing functions Kx and KZ to differ from their 
nominal values will, for convenience, be called gradient errors. t 

t Although field errors will, through the term G2 
effects are not usually important. 

in Eq. (29) also change Kx, such 
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When there are field errors, the design orbit is no longer a possible trajectory. 
If the errors are small, however, there will be another closed curve which is a 
possible orbit for an electron of the nominal energy. I shall call this trajectory 
the disturbed closed orbit. -- The general trajectory will execute betatron oscillations 
with respect to this disturbed closed orbit. And the form of the betatron oscillations 
will be determined by the modified focussing function. That is, if we continue to 
let x represent the displacement from the original design orbit, we may write 

x=xc+x 
P’ 

(2.83) 

where xc is the displacement of the disturbed closed orbit from the ideal one, and 
x 

P 
is the “free” betatron oscillation about the disturbed closed orbit. 

If the closed orbit displacements are small, our assumed linearity of the 
field variations means that the betatron oscillations are the same with respect to 
the disturbed closed orbit as they would be with respect to the design orbit. We 
may therefore, consider separately the distortions of the closed orbit caused by 
field errors and the disturbances to the betatron oscillations caused by gradient 
errors. And we may interpret Eq. (2.83) as a superposition of the closed orbit 
distortion xc and a free betatron oscillation xP that is calculated with respect to 
the design orbit by the methods we have been using until now. 

Let’s look first at the effect of the field errors. Suppose we begin by con- 
sidering the effect of a field error which exists only in a small azimuthal interval 
As, which we may as well place at s = 0. In passing through As the displacement 
x is unchanged, but the slope x’ change by the amount 

ax’=- As , 

where 6B is the deviation of the magnetic field from its nominal value. For the 
vertical motion we would have the same form if 6B were identified as the total 
radial field at the design orbit (with a suitably chosen sign). In keeping with the 
definition of Eq. (2.3) we set ec 6B/E0 = 6G with a suitable subscript x or z 
implied when we are considering the radial or vertical motion. We may, as before, 
consider only a generic x-motion with the understanding that all the results apply 
equally to x-motion or to z-motion when all identifying subscripts are restored. 
We write, then the effect of the field error in As as 

ax’ = &AS (2.84) 

- 50 - 



The field error at s adds to x” = Axl/As a term 6G; and is, therefore, equiva- 
lent to adding a driving force 6G(s) to the equation of motion. We get the complete 
equation of motion for xc by adding this new force term to the usual equation for 
x, Eq. (2.31): 

xl’= K(x) x+6G(s) (2.85) 

The displacement xc of the disturbed closed orbit is the solution of this equation 
that is single valued at each physical azimuth. 

We may make an estimate of the effect of a localized field error at s = 0 by 
using the approximate harmonic form of the betatron motion described in Section 
2.9. Think for the moment of an electron that is traveling along the design orbit - 
so that its slope x1 is zero. When it arrives at s = 0 its slope is suddenly changed 
to Ax’. See Fig. 21. After s = 0 there is no field error (for one full revolution) 
so the electron 

We may expect 
magnitude. 

begins to oscillate about the ideal orbit with the amplitude 
b = XAx’ = Pnax) = p, 6GA.s. (2.86) 

the closed orbit displacement xc to be of the same order of 

I +27Tx= ill@“--+ 1611A11 

FIG. 21--Effect of a localized field error. 

To make a proper calculation of xc, we should use the correct pseudo-harmonic 
free oscillation, and remember also that the displaced closed orbit is defined as 
that particular trajectory which closes on itself after one revolution. In other 
words xc must be single valued at each physical azimuth s, namely sc( s + L) = xc( s). 
In particular, 

xc(L) = xc(O) ; (2.87) 

and by Eq. (2.84) 
x;(L) + ~GAs = x;(O) (2.88) 
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But between s = 0 and s = L there are no field errors, so xc is just a free oscil- 
lation about the ideal orbit. See Fig. 22. That is, xc must be given by Eq. (2.46): 

xc(s) = 8 Jqij cos(@ -l9), s # 0, (2.89) 

with the arbitrary constants 2 and 8 to be chosen so that Eqs. (2.87) and (2.88) 
are satisfied. 

FIG. 22--The disturbed closed orbit for a field error at s = 0. 

Using Eq. (2.52) for x;(s) - everywhere but at s = 0 - you may verify that the 
appropriate values of 2 and 6 aret 

a= =Asfi) 
2 sin 7rv (2.90) 

& iv (2.91) 
The displacement of the disturbed closed orbit is then 

x 
C f/m- cm pw) - TV) (2.92) 

The form of the amplitude invariant 2 displays the two most interesting features 
of the disturbed closed orbit. Notice first, that the displacement of the closed 
orbit is everywhere proportional to the lfstrengthll 6G As of the field error, and to -- 
the root of /3(O), e magnitude of the betatron function at the location of the per- --- -- -- -- 
turbation. You see why one may consider that p(s) - or more precisely 

47s) = JR3 - is a measure of the llsensitivityll to disturbances. 
Second, notice that the denominator of 2 goes toward zero, and xc becomes, 

therefore, very large whenever the betatron number v approaches an integer. It 
is this behavior which was referred to earlier as an integral resonance which 
must be avoided in choosing the operating point (vx, vz). 

f The phase constant 0 is, of course, only defined within an integral multiple of 
2n. 
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Notice that the displacement of the closed orbit at the location of the error 
has a particularly simple form. You just set s = 0 in Eq. (2.92), or generalizing 
to an error 6G located in As at an arbitrary azimuth, say sl, you get 

P(sl) 
x&) = SGAs 2 tan T,, (2.93) 

The displacement is now proportional to the first power of ,6, but the same resonance 
dependence on v is evident in the tangent factor. Notice also that except for the 
resonant denominator, this result agrees with the estimate given in Eq. (2.86). 

We may also generalize Eq. (2.92) to give the closed orbit distortion for an 
arbitrary distribution 8G(s) of field errors around the ring. At each azimuth s 
the closed orbit displacements caused by the errors at all other azimuths will add. 
For an error at S we should replace s = 0 by S in Eq. (2.92) - and at the same time 
replace q(s) by e(s) - e(Z). We may then sum over all AZ, to get . 

(2.94) 

If we have a known field deviation 8G(s), this equation will (with /3(s) and v taken 
as their undisturbed values) give us .the form of the displaced closed orbit. 

If the field deviations are true f1errors11 with an unknown statistical distribution, 
a more complex statistical analysis must be made to arrive at a statistical estimate 
ofx . I shall not go into that subject here. 

C 
As mentioned earlier the total displacement from the ideal orbit is the sum of 

xc and a free betatron oscillation. In the following sections I shall ignore xc with 
the understanding that it must always be added in when one wishes to find the total 
displacement of a trajectory from the design orbit. 

2.11. Gradient Errors 
Let’s turn now to the effects of gradient errors on the betatron oscillations 

about the ideal closed orbit. These 1ferrors7f refer to the deviations of the focussing 
function K(s) from its initially prescribed - or nominal - value at each azimuth s. 
Let’s write 

K(s) actual = K(s) nominal + ys) (2.95) 

where we assume k(s) to be a small quantity. The effect of the deviation k(s) will 
be to change the betatron function from its nominal value /3(s) to some new value 
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p(s) + u(s). And the betatron number will be changed from its nominal value v 
to some new value u + Au. Generally the tune shift Au is of more particular con- -- 
tern, because of the need to keep the operating point away from resonances. 

Since the evaluation of @ is a bit tedious, I shall not give a rigorous deviation 
here. I shall rather show how a simple calculation of Au can be made and then 
just write down the exact results for A@ whose derivation can be found elsewhere. t 

Suppose that there is a gradient error k in only a small azimuthal interval 
As at s = 0. Then as an electron passes s = 0 it will receive an extra angular kick 
Ax’ which is proportional to its displacement x. In fact, by Eq. (2.19) 

Ax’=kAsx. (2.96) 
Let’s again approximate the betatron motion by a simple harmonic oscillation; and 
ask what will happen when an electron arrives at s = 0 at the maximum of an oscil- 
lation. The motion will be as shown in Fig. 23. Before arriving at s = 0 the 

FIG. 23-Effect of a gradient error at s = 0. 

displacement was given by 
x = b cos s/p,; 

and after s = 0 it will follow 
x = (b + Ab) cos(s/& + A$) 

where 
b+Ab - sinA$=Ax’ 

Pn 
(2.99) 

(2.97) 

(2.98) 

f In any book on accelerators; see for example Ref. 5 or 7. 
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I 

For small Ax’, A@ is small and Ab is much less than b, so we can write that 

@,a”’ 
A$ = b (2.100) 

Using Eq. (2.96) for Ax1 - and remembering that at s = 0 the displacement is 
b- we have that 

A$=P,kAs (2.101) 

The effect of the gradient error is mainly to shift the phase of the oscillation by 
this A$. Now recall that the 2~fv is just the total phase shift in one revolution; 
so roughly speaking the gradient error has produced 

Av = - 
P, kAs 

%=- 2n (2.102) 

The negative sign comes in because the total phase advance has been reduced. 
This result is actually too large by a factor of two. The reason is that we have 

calculated A$ for the special case of the electron arriving at s = 0 at the maximum 
of its oscillation. If the electron arrives at s = 0 with the phase Go, the phase 
shift A$ gets reduced by the factor cos2 C#J~ - as you can easily check. Since on 
successive turns e. walks through many values we should expect the average A$ 
to be reduced by the .average of cos2 $I,, which is just l/2. With this correction 
we estimate a Av which is precisely what is obtained& a more direct calculation, t -- -- --- 
namely 

Av = - & ,6kAs (2.103) 

Notice that the tune shift is just proportional to the gradient error at any point 
and to the value of p there. We see again that the betatron function is an indicator 
of the local %ensitivity” to imperfections of the guide field. 

If there is a gradient error k(s) distributed around the ring, the total tune 
shift is 

Av= -& 4 P(s) k(s) ds (2.104) 

f As can be carried out with only a little effort by making use of Eq. (2.79) for v. 
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I have said earlier that we might expect Av to scale as V, so that large v - 
values are to be avoided. To see that it is so, recall (from Section 2.10) that p 
is expected to scale roughly as /KI -l/2 . Then v should scale as B\ l/2 . From 
Eq. (2.104), AV would scale as y3 so AV/V would scale as k/K. For a given 
relative size of the gradient errors the tune shift Au is proportional to v. But 
the spacing between resonances is independent of v so large u values imply a 
more delicate machine. 

A change of v implies that there must have been a change of p which is not 
evident in the simple calculation above. I shall now just write down an expression 
for @, and make some comments on it. It can be shown that 

c)(s) - q(8) - v 1 ds’, (2.105) 

where, as usual, 

Compare this result with the one obtained in Eq. (2.94) for the closed orbit 
distortions. The form is similar, but with two important differences. First, 
while p1’2 appears in the integral for the closed orbit displacements, the first 
power of /3 appears in the integral for A@. Second, notice that the argument of 
the sine factor in the denominator is now 2nv instead of 7~. The resonant “blow- 
up” of A./3 occurs at integral and half integral values of v. The gradient -- --- 
errors introduce a new set of resonances in the operating diagram of vx versus 
v z, which must be avoided in a working storage ring. 

The tune shift Au comes, of course, from the change in the betatron function. 
From the definition of V, Eq. (2.60), we can write that 

2nAv =- 
f 

- ds 
P2 

A straightforward integration over s of q/p2 using Eq. (2.105) gives the Av of 
Eq. (2.104). 

You are perhaps by now wondering about the following strange point. Although 
q has a resonance blow-up at half-integral values of V, the tune shift AV does not. 
How can that be? The reason is that the expression we have derived for Au 
applies only for small changes in p, and is therefore not valid too close to a 
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FIG. 24--Electric and magnetic fields seen by an electron of Beam 1 as it 
passes through a bunch of Beam 2. 
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resonance, where q diverges. A more precise calculation,which retains second 
order effects in the perturbation k, must be made to find AV - and, in fact, A@ 
itself - near a resonance of v . 

2.12. Beam-Beam Interaction; Tune Shift 
I have mentioned in Section 1.6 a limit on the intensity of colliding beams. 

The ground is now prepared for some understanding of this limit. Each time two 
bunches collide, each electron of one bunch receives a lateral impulse from the 
macroscopic (%pace-charge”) electromagnetic field generated by the other bunch. 
A. complete analysis of the effect of these impulses is quite complex. We can, 
however, take a simple semiquantitative approach to the effects in terms of the 
tune shift Av which arises from the “gradient error” set up by the space-charge 
forces. In many (perhaps most) storage rings the dominant effect is on the verti- 
cal oscillations. To simplify the treatment, I shall make the assumption that that 
is so and defer until later in this section a consideration of the effects on the hori- 
zontal motion. In cases where the horizontal effects dominate the appropriate 
translation of the discussion and conclusions can easily be made. 

Think of the beam bunches as flat rectangular slabs and consider 
the force on an electron of Beam 1 as it passes through the bunch of Beam 2. See 
Fig. 24(a). On the axis of the bunch the force is zero. Above the center there is 
an electric field & - Fig. 24 (b) - which increases linearly with z until the surface 
of the bunch, and then falls off as sketched in Fig. 25. For all z within the bunch 

FIG. 25--Electric field strength &’ above and below the center of an 
idealized rectangular bunch. 

the electric field is obtained easily from Gauss’s Law. The electric field G at 
z is given by the superificial charge density between 0 and z. If the bunch has 
the dimensions w, h, and P and contains NB electrons, the electric field is 

1 NBez 
‘=T Pwh (2.107) 
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When an electron passes through a bunch it feels the electric force e& for a time? 

P/2c, and receives from it a vertical impulse which changes the vertical component 
of its momentum p by 

e&Q Apz(electric) = 2~ (2.108) 

The moving charges of a bunch also generate a magnetic field - Fig. 24(c) - 
which is always just G/c. The magnetic force is equal, in both magnitude and 
direction, to the electric one, so the total impulse received by the electron is just 
doubled or 

Apz = 
e2 No 

‘0” wh z* (2.109) 

The direction of the impulse is repulsive for collisions of like beams (e.g., electron- 
electron) and attractive for unlike beams (electron-positron). For the present 
purposes we shall not be concerned with the algebraic sign of the impulse. 

Now an electron which receives a vertical impulse Ap,, suffers a change in 
slope AZ’ given by 

(2.110) 

where p = ymc. Since this vertical impulse is proportional to z, it has the same 
effect - see Eq. (2.96) - as an impulsive gradient error of strength kz As with 

kZAs= 9 (2.111) 

Such a gradient error produces change in the betatron number of the vertical 
oscillations whose magnitude is, by Eq. (2.103), 

c Avz = x kas (2.112) 

where pz” is the value of the vertical betatron function at the azimuth of the inter- 
section point. Pulling all the pieces above together we find that 

Avz = ‘ePZNz y w h (rectangular beam) (2.113) 

t Don’t forget that both the bunch and the electron are moving at the speed c. 
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when re is the usual definition of the classical electron radius: 

e2 r = 
e 47r cgmc2 

(2.114) 

A real beam does not however, have the ideal rectangular shape assumed. 
Rather it has a Gaussian distribution of particle density in all three dimensions. 
The main difference is that variation of the impulse with z is not strictly linear - 
the linear part in Fig. 25 gets rounded off at its upper and lower edges. To the 
extent that the impulse depends nonlinearly on z we should no longer speak of a 
tune shift Av. But for small betatron amplitudes, the impulse does depend nearly 
linearly on z and we may define the linear vertical tune shift as the Av for these - P -- 
small amplitudes. The calculation proceeds as before; if we now let w/2 and h/2 
now stand for the rms half-widths of the distributions, and if the beam is reasonably 
as flat (h<<w) we get the same result except for a factor of 2/r: 

2re PZNB 
AvZ = 7 5 (flat Gaussian beam) (2.115) 

If we also extend the calculation to include beam crossing at an angle - see 
Section ‘1.5 - we find that the impulse depends only on the projected transverse 
dimensions weff and heff, as did the luminosity. Recalling the definition of Aim 
in Eq. (1:lO) we may write the linear vertical tune shift as 

re P;N 
Avz = 2 YAint (flat Gaussian beam) (2.116) 

where N = NBB is the total number of electrons in the B equal bunches of the stored 
beam. If the aspect of two beams at the intersection is not flat (that is if heff 
became comparable to, or greater than w e.$ Eqs. (2.115) and (2.116) need cor- 
rection. The correction would, for example, amount to a factor of 2 for round 
beams. To simplify the discussions of Part I this small correction has been ignored 
although it should be kept in mind for more precise calculations. (A complete 
expression for Avz, correct for any ratio of h to w is given in Eq. (2.122). 

What is the effect of this vertical tune shift? Suppose we have a stored beam 
whose vertical betatron number vz is placed nicely away from any disturbing 
resonance - say by 0.1 of an integer. As we put this beam in collision with another 
beam vz is charged by Av z, and for a high enough beam intensity the tune shift 
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may push vz to a resonance. We might expect to be in difficulty when Av, reaches 
some number like 0.1. This is roughly the origin of the beam density limit described 
in Section 1.6. In any storage ring the tune shift Avz can be no larger than some 
critical limit, which by Eq. (2.116) sets an upper limit to the transverse charge 
density N/Aint. 

The nature of the limiting tune shift is however, somewhat more subtle than 
just described. If there were just a tune shift Avz due to the beam-beam inter- 
action, one might, in principle, compensate for it by making an opposite pertur- 
bation somewhere in the guide field. Remember however, that the Avz evaluated 
above is an approximation for small oscillation amplitudes. Due to the nonlineari- 
ties in the forces, the actual effective tune shifts will be different for different 
amplitudes - being lower for the larger amplitudes. Also, we must remember 
that an electron oscillates simultaneously in both z and x and that when it is at its 
maximum excursion in x, it will find smaller forces in the z direction - see 
Fig. 26. So Avz should more properly be thought of a measure of the spread of 
tune shifts within the beam. And such a spread cannot be compensated for by any 
change in a linear guide field. 

FIG. 26--Electric field 8 from a flattened elliptical bunch. 

A complete analytical theory of the beam-beam interaction in an electron 
storage ring is not available. The treatment is complicated by the nonlinearity of 
the forces and by the quasistocastic variations of the perturbation on successive 
revolutions - due to the combined oscillations in x and z. Various people8 have 
investigated the beam- beam interaction by approximate computer simulations and 
the results appear to be in reasonable accord with observations on the Princeton- 
Stanford, Orsay, and Novosibirsk rings. The results may be described as 
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follows: The expression for Av z should be taken merely as a measure of the 
strength of space-charge forces. There is a negligible perturbation on the stored 
beams provided that Av, is less than a certain small number Avg. But if Avz 
exceeds Avo then the electron oscillations of the perturbated beam grow rapidly 
to amplitudes much larger than normal. There appears to be a “threshold” at 
Avo for a so-called incoherent instability. The increased beam size from the 
instability may cause loss of electrons; or, at best, so decrease the beam density 
that the luminosity is drastically reduced. 

The effect we are considering describes the disturbances on the electrons 
in one beam by the macroscopic fields of the other beam. There is of course, 
the corresponding effect of the first beam on the individual electrons of the second 
beam. Notice, however, that if one beam is stronger (more intense) than the 
other, the instability should occur first in the weaker beam. For this reason, the 
effect has often been described as the “weak-beam instability.” Notice also, that 
once the weak beam has “blown up” due to the instability, its current density is 
sharply reduced, and the Avz for the strong beam becomes quite small. Any 
further increases in the intensity of the weak beam will not lead to an instability 
of the strong beam. You can see that for two beams of comparable intensity there 
will be a kind of “fflip-flopft effect. Near the instability threshold each beam is 
trying to make the other blow up. Once one of the beam wins - by making the 
other go unstable - it can relax,since the Avz it sees then drops sharply. A stable 
equilibrium will always be reached with one beam blown up and the other undisturbed. 

We can now see the nature of the beam intensity limit described in Section 1.6. 
The currents in the colliding beams must be such that for each beam Avz ( Avo; 
which it is generally agreed, is a number very near 0.025. Equation (2.116) then 
sets a limit on the current density permitted in each beam. This limit is just the 
one adopted in Eq. (1.14) if /3, is identified as pz, * the vertical betatron function 
at the interaction point. 

Recently, the Orsay group has proposed a way of avoiding the effect of beam- 
beam interaction by using neutral colliding beams’ - each beam consisting of equal 
numbers of positrons and electrons. For such beams Av would be obtained by 
replacing N by N, - N- and clearly, Av goes to zero for neutral beams. The po- 
tential advantages and disadvantages of this interesting new idea have not yet been 
fully analyzed (at least not by me), and it will not be considered further in this 
report. 

- 62 - 



The vertical tune shift Avz has been emphasized because it tends to play the 
dominant role in limiting the current of high energy storage rings, but this will 
be so only so long as the horizontal tune shift Avx is less than Avz. Let’s look 
now at Avx so we can tell when the assumed domination of Avz is justified. 

Returning to the flat-ribbon model of a beam, consider the force on an electron 
that passes through a bunch at a small radial distance xc< w from the axis. See 
Fig. 27. We can find the electric force on the electron by noticing that - by 
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FIG. 27--Electric field at an electron that passes through a 
bunch at a small radial distance from the axis. 

symmetry - all of the unshaded areas of the bunch will contribute no net force 
and that the resultant force is due just to the shaded area of width 2x. Considering 
the shaded area as a line charge with the linear charge density A at the distance 
w/2, the electric field strength &at the electron at x is 

e= A 
7Tew ’ 0 

The fraction of the total charge in the shaded area is 2x/w, so 

NBe 2x h=p --, 
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and 
2NBex 

lW2 
(2.119) 

Notice that the field strength per unit displacement differs from that in Eq. 
(2.107) by the factor 2w/L The rest of the analysis proceeds as before except 
that when one goes to Gaussian beams the factor of 2 drops out of the ratio and 
for flat Gaussian beams one finds - corresponding to Eq. (2.115) - that 

Av = ‘ePiNB 
X 2Ayw2 

(flat Gaussian beams) (2.120) 

If the beams cross at an angle, w and h in Eq. (2.115) and (2.120) get replaced 

by Weff Or heff’ See Section 1.5. So in the general case the ratio of the horizontal 
to the vertical tune shift can be written as 

Av X C heff -= 
AvZ 4 Weff * 

(2.121) 

This result is, it turns out, correct for any aspect ratio of the beam cross section 
(any ratio of w to h) . 

We might expect that p: and p,* would generally be comparable. And since the 
natural width of a beam is much larger than its natural height, the ratio above would 
be expected to be less than 1 - as has been assumed in the discussion of the section. 
With beam crossings at an angle, however, and by the use of special techniques to 
modify, almost at will, the beta functions at the intersection, it is possible to have 
the ratio pg/@s take on almost any value. If the ratio of Eq. (2.121) is greater 
than 1 the horizontal tune shift dominates the discussion of this section should be 
modified accordingly. It is, of course, necessary always to insure that both tune 
shifts are less than Ave. 

Now that the physics of the tune shift should be clear, let me write down here 
the complete expressions one obtains for the vertical and horizontal linear tune 
shifts with Gaussian beams of any aspect ratio. To avoid confusion I write now 
ax9 o- z, and as for the rms half-widths of the distributions (cs refers to the 
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longitudinal distribution). For head-on collisions: 
r NBP; 

Avz = sf yu(u +6) zx z 
N * $3 

nvx = 4 yo(o+?) 
xz x 

(2.122) 

(2.123) 

(The expressions are symmetric in z and x as they should be. Notice also that 
they go over to the expression derived for flat beams when ax >> oz. ) If the beams 
cross at a vertical angle of 2 6, oz gets replaced by 

( uz)eff = ( CT”, + a;s2 ) 1’2 
or for a horizontal crossing angle of 26, ux gets replaced by 

(ux)eff = ( CT; +u;82)1’2 

(2.124) 

(2.125) 

I should perhaps emphasize that the beam-beam interaction considered in 
this sections does not take into account the effects coherent lateral oscillations of 
the electrons in a bunch - that is, of lateral motions of the bunch as a whole. 
Such oscillations can occur and can lead to coherent instabilities involving both 
beams. A discussion of such effects is outside the scope of this report, but may 
be found elsewhere. 10 For successful operation of a storage ring such oscillations 
must be inhibited in some way or another. And then the conclusions of this section 
are applicable. 

2.13. Low-Beta Insert 
In a high energy storage ring the maximum beam current will, at high energy, 

be determined by the available radio frequency power - as discussed in Section 1.7. 
We saw there that if the beam dimensions can be suitably adjusted, the maximum 
achievable luminosity is proportional to the maximum permitted current density - 
see Eq. (1.22). If we take Avz from Eq. (2.116) this maximum current density is 

DC = -$- = 
2Avoy 
r,Pg 

(2.126) 
int 

and the maximum luminosity is 

z2 = m&Oy 
2 re P; 

(2.127) 

- 65 - 



Given the energy (y), the beam current (NW), and the radius of the storage 
ring (f = c/2~ R), the only “free” parameter is /3X. The form of this result lead 
Robinson and Voss to propose an idea for increasing the luminosity of high energy 
rings. 

A uniformly small betatron function p,(s) would have the disadvantage (among 
others) of producing large values of vz with the attendant difficulties of avoiding 
resonances. Robinson and Voss realized, however, that it was possible to obtain 
an abnormally low value of p at the location of the beam crossing point while 
leaving the rest of the ring with a normal size /3. The idea is to introduce a special 
section in the guide field which produces only a localized region of very low P, - 
the so-called low-beta insert. -- 

To see how the idea works we must return to the discussion of the betatron 
trajectories in Section 2.6. Imagine that a ring has been designed with generally 
satisfactory properties for storing the desired beams. Now imagine that this ring 
is “broken open” at some azimuth and a special section of focussing elements is 
inserted with the following property: Its transfer matrix g is the unit matrix, so 
that an electron which enters the insert with the displacement and slope (x, x1) 
leaves the insert with the same displacement and slope; and the same is true for 
the z motion. An insert with these properties will not affect the trajectories in the 
remainder of the ring; it follows that the betatron functions there will also be un- 
changed. Thus if we place the constraint on an insert that it shall have unit transfer 
matrices in both x and z we are otherwise free to choose its structure in any way 
we wish. And if we are clever enough, we can make the betatron functions take on 
almost any values we wish at some place inside of the insert. 

Actually, the requirement that the insert have a unit transfer matrix is stronger 
than necessary. For example, you can easily show that a transfer matrix of -1 
would also not change the betatron function in the rest of the ring. And, indeed, 
there are still other possibilities, as you can see by referring to the results of 
Section 2.9. There we saw that t(s), the square root of the betatron function p(s), 
is that function which satisfies the differential equation (2.74) and is single-valued 
around the ring. Suppose we wish to “break open” a ring at some point where 5 
and 5’ take on the values 5, and [b and insert a special focussing section, which 
we may define by its focussing function K(s). Say that the insert will go from s1 
to s2 - with s now suitably redefined to include the insert. Then the function C(S) 
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will be unchanged outside of the insert provided only that the K(s) of the insert is 
such that t(s) satisfies Eq. (2.74) with the boundary conditions that [(sl) = [(s2)= 
5, and cl(sl) = j’(s2) = Sk. Or we may say the same thing in another way. Sup- 
pose we start at one end of the insert, say at sI, with the initial conditions that 
c(sl) = lo and F(sl) = <b and integrate Eq. (2.74) through the insert to s2. If we 
arrive at s2 with [(s2) = co and [‘(s2) = t;b then the function c(s) through the rest 
of the ring will be left unchanged. This is the most general definition of an insert 
that will not disturb the trajectories in the main part of the ring. 

A special insert will, necessarily, change the betatron number v of the whole 
ring, since there must be some advance of the betatron phase 4(s) through the 
insert. For example, an insert with a unit transfer matrix must increase the 
phase by 27~ - or some integral multiple of it. So the v of the modified ring would 
be increased by 1 or some integer. Practical inserts which satisfy the more general 
requirement of the preceding paragraph will generally change v by something near 
an integer. 

The design of low-beta inserts which satisfy the required conditions, which 
give the desired low value of p at some chosen interior point, and which can be 
constructed with real magnetic components is an art the details of which are outside 
the scope ‘of this report - and whkh,^in any case, I am not competent to discuss. 
Let me just show one specific example of such an insert and then make some ob- 
servations that will apply generally to such inserts. 

I show in Fig. 28(a) the focussing function Kx for a low-beta insert which 
was designed for a storage ring proposed at SLAC. For this insert KZ is just 
-Kx. The insert was intended to be inserted between two of the “normal” cells 
of the magnet whose amplitude functions c(s) = m were shown in Fig. 18. 
The functions 5, and 5, of the insert are also shown in Fig. 28. Both functions 
have zero slopes at the boundary of the insert (as does the normal cell) and their 
values match the normal cell at the boundary. So all required conditions are 
satisfied. 

The insert shown in Fig. 28 was designed to have a very low ,6, at its center- 
namely 5 cm in comparison with a typical p, of ~1000 cm in the normal cell - 
but to have only a normal p, there. The center is of course, to be the point of 
intersection of the stored beams. For this reason there are no magnet elements 
for 2.5 meters on either side of the center - leaving 5 meters free for the 
detection apparatus. 
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FIG. 28--Focussing function and envelope functions for the SLAC 
low-beta insert. 
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A striking feature of the curve for g,(s) in Fig. 28 is the very large value 
reached at the quadrupoles nearest to the center of the insert. These large values 
have several unfortunate consequences. First, since the betatron oscillation 
amplitudes (for a given amplitude in the normal cell) go in proportion to t(s) they 
will be very large at these nearest quadrupoles - requiring that they have a large 
aperture. Second, as we have seen,the closed orbit distortions and the perturbations 
to p(s) and to v are proportional to p = c2 at the location of the perturbation. The 
effect of any field of gradient errors at the nearest quadrupole is magnified by a 
large factor. Clearly, the large values of /3 are undesirable and place stringent 
technical requirements on the construction of the insert. 

Why must p be so large? We worked out in Section 2.10 a simple expression 
for the form of /3(s) ina focus-free region - Eq. (2.81). If p(s) has the minimum 
value PO, then for distances L large compared with /3, - in a region where K =0 - 
we found that 

p= a” 
PO 

(2.128) 

If we ask for 2.5 meters free space to the nearest quadrupole and also for 
/?, = 5 cm, we must get that ,G’ becomes as large as 125 meters (!) at the position 
of the first quadrupole. The large 8, at the quadrupole is the price paid for having 
a clear experimental region together with the high luminosity which comes from 
the small j3, at the intersection. 
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III. ENERGY OSCILLATIONS 

3.1. Off-Energy Orbits 
In the preceding sections I have been discussing the trajectories in a storage 

ring of electrons with the nominal energy E. - which is the design energy for a 
given setting of the magnet currents. Stored electrons do not, however, all have 
this ideal energy. In general, the energy E of a stored electron will deviate from 
the nominal energy, and, as described in Section 1.2, will oscillate about it. These 
energy oscillations - often called “synchrotron oscillations” - are the subject of 
the part. 

We must, first, understand the motion of electrons whose energy differs by 
a small amount 2 from the nominal energy. Keeping the assumptions of Section 
2.3 that the design orbit lies in a horizontal plane, energy deviations will, to 
first order in small quantities, affect only the radial motion. The vertical dis- 
placement will still be described by the betatron oscillations analyzed in Part II, 
and will not be considered further here. From Section 2.6 onward it was convenient 
to-let the symbol x stand generally for either x or z 

P P’ the lateral displacements 
associated with the betatron oscillations. I now return to the notation in which x 
represents the-total horizontal displacement of a trajectory from the design orbit. 

It was shown in Section 2.5 that in an ideal guide field the radial motion for 
an electron with the energy deviation s can be written as the sum of two parts 

x=x +x 
P E (3.1) 

where x 
P 

is the betatron displacement and x6 is a displacement which depends 
only on the energy of the electron. If we wish to include also the results of Section 
2.11, we should include in addition, the distortion of the closed orbit due to magnet 
imperfections and write 

x=x +xe+x 
P C (3.2) 

Since the various contributions add linearily - under our assumptions of a linear 
guide fieldof small energy deviations, and of small displacements - we have been 
able to consider separately the several contributions to x. We now ignore the 
other contributions to x and focus on xe. 

According to Eq. (2.28) the energy displacement xc can be written as 

xE = 77(s) * 
0 

(3.3) 
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where r](s) is a function of the azimuthal coordinate s which is single valued at 
each physical azimuth. An off-energy electron with no betatron oscillations runs 
around a new closed orbit whose displacement from the ideal orbit is everywhere -- 
proportional to r/EO, with a proportionality factor which depends on the azimuth 
according to a given function q(s), characteristic of the total guide field configuration. 
I shall call T(S) the off-energy function - it is just the closed orbit displacement 
per unit energy deviation. 

Let’s look now at the nature of q(s). It was defined - see Eq. (2.29) - as that 
solution of the differential equation f 

q” = Kx( s)q + G(s) (3.4) 

which is periodic in s with period L and is, therefore, single valued for all physical 
azimuths . The functions G(s) and Kx(s) were defined in Eqs. (2.3) and (2.21). 

Let’s consider the qualitative behavior implied by this equation for the q(s) of 
a separated function guide field (which was defined in Section 2.2). We may take 
as an example the guide field of the SLAC proposal which was used for illustration 
in Sections 2.6 and 2.10. In Fig. 29(a), (b) I show Kx and G for this guide field 
and in (c), the off-energy function q(s). 

In a field free section- both G and Kx are zero so V(s) has a segment of constant 
slope. In a pure quadrupole G is zero and Kx is just the quadrupole strength. In 
a focussing quadrupole Kx is negative and q(s) follows a segment of a sinusoidal 
oscillation about zero with the form 

v=acos (,/-Kx s+(3) 

In a defocussing quadrupole K, is positive and q(s) follows a segment of a positive 
exponential like 

q=aexp(qs+6) 

The curve of q(s) is YTattractedTT toward the s-axis in a focussing quad and repelled 
from the axis in a defocussing quad. 

Although KI is zero in a flat bending magnet, Kx is not. In fact, Kx = G2 and 
the equation for r] is 

q”=-G2q+G=-G2 (3.5) 

f,,= &-)/;s. 
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FIG. 29--Guide-field functions and the off-momentum function for 
the SLAC guide field. 

The curve of rl is a segment of a sinusoid which is lTattractedTf toward the level 
q. = l/G with a “restoring force” proportional to G2. (The level q. is just equal 
to the radius of curvature p of the design orbit. ) 

From the above discussion you can understand the qualitative features of the 
variations of q(s) that appear in Fig. 29. For all %ormalTf storage rings it turns 
out that the off-energy function is everywhere positive. 

A storage ring user is not generally faced with the need to make a detailed 
calculation of q(s) . Its graph should be provided by the ring designers. I will 
therefore, only indicate briefly how it may be calculated. For a separated 
function guide field the preceding discussion can be expanded to give a method for 
calculating q(s). Suppose you begin at s = 0 with some assumed values of ~(0) and 
V(0) and evaluate r](s) as a succession of segments of the kind described above 
until you make your way around one complete revolution - until you get to s = L. 
You will get the true ‘/l(s) if you then choose ~(0) and q’(O) so that q(L) and v’(L) 
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are respectively, equal to q(O) and q?(O). The computation can be carried out 
most straightforwardly by using a matrix technique. (See Ref. 11). 

The off-energy function can also be obtained (for any kind of guide field) by 
making use of the results we obtained in Section 2.11 for disturbed closed orbits. 
We may imagine that an off-energy orbit is just a %listurbedYt closed orbit since 
an energy deviation gives rise to a change in curvature just as does a field error. 
That is to say, that a field error 6G in a segment As of the orbit produces a change 
of curvature in the path of an electron of energy E. which is the same as the change 
of curvature that results when an electron with an energy deviation 6 goes through 
the nominal field provided that 6G/G = z/Eo. Since q(s) is the ratio of the closed 
orbit displacement to $/Eo, we may compute V(S) by replacing 6G in Eq. (2.92) 
of Section 2.11 by G. This argument can also be justified by noticing that Eq. (3.4) 
for 7 has the same form as Eq. (2.85) for xc in Section 2.11; the latter going into 
the former if we make the substitutions xc--~ and 6Gd.G. Making the same 
substitutions in Eq. (2.94) we get 

7(s) = 2*v f w’s) mi-cos ((P(s) - e(s) - TV } ds’- (3.6) 

So if p(s) is already known we can get-q(s) by an integration. Notice that q(s) too 
will have a resonance behavior when v approaches an integer. 

If the design orbit does not lie in a plane - as, for example, in the recent 
DESY or Orsay designs - then the discussionof this Section must be repeated for 
the vertical displacements. There will in such cases be two curvature functions 
Gx and Gy as well as the two focussing functions Kx and Ks. The vertical displace- 
ments will also have an off-energy contribution which will be proportional to an 
off-energy function Tz(s). And this vertical off-energy function can be evaluated 
in terms of the vertical focussing and curvature functions. There will be generally 
one important qualitative difference from the horizontal case in that q, will have 
both positive and negative values and its average around the ring will be zero. 

3.2 Orbit Length; Dilation Factor 
An important consequence”of an energy deviation is the associated change in 

the circumference of the closed orbit. I wish now to take a look at this effect. An 
electron of the nominal energy E. which circulates on the design orbit will, in one 
revolution, travel the distance L, the circumference of the design orbit. On any 
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other trajectory, the path length traveled in one revolution will depend on the 
deviations from the ideal orbit and may be expected to differ from L. We have 
already noticed in Section 2.4 that an electron which moves from s to s + ds with 
a displacement x from the design orbit has a path length de different from ds by 
an amount that depends on the local radius of curvature. See Fig. 9. We found 
there - Eq. (2.15) - that 

de = {l + G(s)x/ds, (3.7) 
so long as only terms to first order in x are retained. 

A betatron oscillation will produce on the average no first order change in the -- 
path length. The path is lengthened on a positive swing (x > 0) of the oscillation 
and shortened on a negative swing. Since the betatron displacements are on the 
average, symmetric about x = 0, the path length change is zero when averaged 
over one or more complete betatron cycles. If the betatron number v is much 
greater than 1 so that there are several betatron cycles in one revolution, the net 
change in the path length in one revolution is small. If v = 1 however, there will 
be changes in the path length from one revolution to the next. We shall however, 
be interested here only on the averape path length (averaged over several revolutions) 
and the betatron oscillations will not, to first order, affect this average. 

There is a second order effect - which gives a time change proportional to 
the square of the betatron amplitude. It can introduce a very small coupling 
between betatron oscillations and energy oscillations. I am ignoring here all such 
second-order processes. 

The lateral displacement xe of an off-energy orbit does give rise to a change in 
the orbit length - because, for a given energy deviation, xe has generally the same 
sign all around the ring. Putting xe for x in Eq. (3.7) and integrating once around 
the ring, we get for the circumference lE of an off-energy closed orbit 

Q, = f f dQ = {l + G(s) xc(s)} ds 

The first term of the integral gives the complete integral of ds which is just L, 
the length of the design orbit. The second term gives the elongation due to the 
energy deviation; let’s call it 61,. Recalling Eq. (3.3) for xe, we get that 

aa, = A- 
EO f G(s) v(s) ds (3.9) 
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The change in the orbit length is proportional to the energy deviation f, with a 
constant of proportionality - the definite integral - which can be obtained from 
the known properties of the guide field. 

It is convenient to define a dimensionless parameter (Y, which we may call 
the dilation factor by 

6Q 
-f- =O! f 

EO 

It follows from Eq. (3.9) that 
1 Cy=- 
L f G(s) q(s) ds. 

(3.10) 

(3.11) 

The dilation factor CY is a number which like the betatron number v is a character- 
istic of the total guide field. It is a crucial parameter of the energy oscillations. 

It is with some reluctance that I have introduced the name “dilation factor” 
for o!, since it is quite generally known as the “momentum-compaction. *I This 
other name was adopted in the early analyses of alternating gradient guide fields 
in relation to the lateral spread of orbits of different momenta - which spread is 
proportioned to our q(s) . It is true that a! is a general indicator of the magnitude 
of rj. However, a greater “compaction” of different momenta generally corresponds 
to a smaller Q!. One might therefore think that the “compaction” would be measured 
by the inverse of cx. Since cy relates anyway only indirectly to 7 and is specifically 
a measure of the variations in orbit length, I would hope that some more appro- 
priate - and less misleading - name might be brought into general use. My 
candidate is “dilation factor. I1 

We can get a little better understanding of the nature of a! by looking at it for 
the most common kind of guide field, the isomagnetic guide field defined earlier. 
In an isomagnetic field, G has the value Go in all magnets and zero elsewhere 
(see Eq. (2.9)) so Eq. (3.12) can be expressed by 

GO (y=- 
L S q(s) ds (isomag). 

Me 
(3.12) 

where the integral is to be taken over only those parts of the design orbit which 
are in the bending magnets. 
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This result can be written in a more illuminating way. Suppose we define the 
magnetic average of r) as 

rlts) ds (3.13) 

where P 
Mag 

is the total length of the orbit segments in the bending magnets. (This 
would be the usual definition of the mean value of 31 in all the magnets. ) 

But all of the bending magnets must add up to a complete circle so 1 * Mag ls 
just 2-/r times the constant orbit radius 6 in the magnets which is just l/Go; so 

0 cy=- “L” <UMag = * (3.14) 

Where R = L/2n is the gross orbit radius defined earlier. The dilation factor 
a! is just the ratio of the magnetic average of rl to the gross radius of the orbit. 

The high energy electrons we are concerned with here travel always at a speed 
which is not noticeably different from the speed of light; and the time required for 
each revolution of the storage ring is just proportional to the length of the trajectory. 
On an off-energy orbit corresponding to the energy deviation f, the change BT in 
the revolution time is in the same proportion to the revolution time To on the design 
orbit as the change in length of the closed orbit is to the length of the design orbit: 

(3.15) 

3.3. Approximations for the Off-Energy Function and the Dilation Factor 
For most practical guide fields there is a close relation between the off-energy 

function v(s) and the radial betatron function p,(s) which was our central concern 
in the preceding part. Since the demonstration of this connection is a bit long, I 
shall simply offer it to you without proof. (A demonstration can be dug out of the 
material in Ref. 4.) For an isomagnetic guide field that has a well behaved beta- 
tron function (with no wild variations) a rather good approximation to q(s) is 

77(s) = a#i’2(s) = a,5(s) (isomag) (3.16) 

where a0 is a constant. Except for the scaling factor ao, the function q(s) has 
very nearly the same form as our function l(s). You can confirm this similarity 
for at least one case by comparing Figs. 18 and 29 which show g,(s) and q(s) for 
the same illustrative guide field. For this example Eq. (3.16) is good to a few per 
cent. 
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For most purposes it will be sufficient to take a0 from the ratio of the known 
functions . A formula for it comes out of the mathematical derivation of Eq. (3.16) 
which gives 

a0 = 
< kf2&, 

V 
(isomag), 

X 

(3.17) 

l/2 where vx is the radial betatron number and the magnetic average of p, is defined 
in the same way as we did for 7 in the preceding section - see Eq. (3.13). 

The scaling factor a0 can also be expressed in terms of already defined ring 
parameters. If we average both sides of Eq. (3.16) over all the magnets we have 
that 

<“>Mag N, ao<P:‘2>Mag (isomag) . (3.18) 

By Eq. (3.15), the left-hand side is just aR and by Eq. (3.17) the right-hand side 
is aiv, so we get that 

2 &t!? 
ao vx (3.19) 

andq(s) can be written as 

(3.20) 

This approximation will generally give a reasonably adequate representation of 

A somewhat rougher approximation to a0 can 
l/2 generally speaking, the magnetic average of p, 

same as the square root of the typical value of p, 

be obtained by noticing that, 
should be approximately the 
- which was defined earlier 

as p,, = R/vx. (See Eq. (2.72)). Then, using Eq. (3.17X we expect that 
2 R x- ao v3 

X 

(3.21) 

The last two results also display a useful approximate connection between 
the betatron number vx and the dilation factor Q!; namely that 

1 @X- 2 trough) (3.22) 
V 

X 
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This simple connection between Q! and vx is useful for an understanding of the 
general characteristics of high energy storage rings. If we consider vx to be a 
measure of the focussing %trength” of a guide field, the dilation factor is seen 
to decrease as the inverse square of the strength. 

3.4 Energy Loss and Gain 
Until now we have ignored those effects which change the energy of a stored 

electron; it is now necessary to consider the processes by which an electron loses 
or gains energy. The lateral acceleration along the curved parts of a trajectory 
causes an electron to radiate away some of its energy. The characteristics of this 
radiation loss will be discussed in some detail in Section 4.1. If the electron is 
to remain captured in the storage ring this radiation loss must be compensated 
for, on the average, by an equal energy gain from the radio frequency accelerating 
system of the ring - one or more electrode structures which produce, along parts 
of the orbit, an electric field that can feed energy to the moving electron. It is the 
interplay of the radiation loss and the acceleration gain - together with the properties 
of the guide field - that gathers injected electrons into stable circulating bunches 
and is responsible for the residual small energy oscillations of the electrons in a 
bunch. 

An electron of the nominal energy Eo, moving on the design orbit will radiate 
away a certain amount of energy, say U each revolution. This radiation loss is 

0’ -4 
always a very small fraction (typically 10 or less) of the electron’s energy. And 
the energy gain from the acceleration system is of course, of the same order. The 
small magnitude of the loss in one revolution allows us, fortunately, to make a number 
of simplifying assumptions without which a study of the energy oscillations would 
hardly be tractable. We may, to begin with, make the approximation that an electron 
which starts a revolution with the energy E. will also loose the energy U. during 
the revolution. Although the energy will not strictly remain at Eo, nor the trajectory 
remain on the design orbit, the deviations during one revolution can be neglected. 
The effects which accumulate over several revolutions must, however, be taken 
into account. 

If an electron with the energy E. is given a betatron oscillation its instantaneous 
rate of radiation loss may change - because of a different lateral acceleration along 
the trajectory. But the average energy loss over a complete betatron oscillation will 
not change to first order in the betatron amplitude. (Changes in the lateral oscillation 
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will be proportional to x and will, to first order, average to zero over a complete 
cycle. ) Since we shall be satisfied to consider only the effects which occur over 
many betatron oscillations, we need to look only at the average energy loss. So 
long as we are keeping to our first order view of a storage ring we may ignore 
any dependence of the radiation loss on the betatron displacements. 

The radiation loss will however, change with a change in the energy of an 
electron. Both its different trajectory and its different energy can contribute to 
a modified energy loss. Because all energy changes occur slowly, we may consider 
that an electron is at any instant moving on the off-energy closed orbit which cor- 
responds to its instantaneous energy - or is performing free betatron oscillations 
about that orbit. Since we know the form of the off-energy orbit, we can compute 
the energy lost in each revolution. I shall consider this problem later (in Section 
4.1); for now we may take it as a given function Ura$S) of the energy deviation &. 

Since we shall generally be interested only in small energy deviations, we 
need keep only the linear term in the variation of Urad and write that 

where 

U rad= ‘0 + D$, (3.23) 

(3.24) 

and the derivative is evaluated at the nominal energy Eo. For the present, then, 
the radiation loss may be described by the two constants U. and D - which will be 
evaluated in terms of the properties of the guide field in part IV. 

Let’s now turn to the radio frequency accelerating system - “rf system” for 
short - which supplies energy to the electrons to compensate for the radiation loss. 
The rf system consists typically of one or more cavity resonators such as the one 
shown schematically in Fig. 30, disposed at various places around the storage ring 
and supplied with rf power from some synchronized radio power sources. These 
cavities produce oscillating electric fields along the electron trajectories; and it 
is the component of these fields along the electron’s path which feeds energy to the 
electrons. An electron which goes around once on the design orbit will be given 
by the rf system an amount of energy Urf equal to the integral of the instantaneous 
electric force along its trajectory. 
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FIG. 30--Schematic diagram of an rf accelerating cavity. 

Since the rf fields are time varying, f the energy gained by an electron in 
making one circuit around the ring will depend on the time at which that circuit 
begins in relation to the oscillations of the accelerating fields. Let’s say that the 
time dependence of the fields is given. Then the energy Uti gained by the electron 

- in one revolution will depend on the time1 that it starts its revolution. (We may 
take that the revolution starts at some reference azimuth, say s = 0. ) 

Lf electrons are to be stored on (or near) the design orbit, the variation of 

y..@ must have certain characteristics. I shall assume that U&Z) is a periodic 
function with a period that is some integral submultiple of the period To, the 
period of revolution of an electron that circulates on the design orbit. That is, 

Urf(l + To/k) = UrF, (3.25) 

where k is some integer that will be called the harmonic number of the rf system. 
The variation of UdT) might be, for example, like the function shown in Fig. 31. 
(Although the assumed time variation of Urf is somewhat more restrictive than 
necessary, the rf fields must have at least similar characteristics if a storage 
ring is to work. And most storage rings will have generally the characteristics 
assumed. ) 

Now consider what can happen with an electron of the nominal energy E. that 
is circulating on the design orbit. Suppose that it is started on its journey at just 

t As they must be if there is to be a net integral of the electric field around a 
closed path! 
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FIG. 31--Energy gain from the rf system as a function of the 
starting time t of a revolution. 

the right time Is for which the rf gain Ur.(xs) is just equal to the radiation loss Uo. 
See Fig. 31. In the next revolution the energy lost and gained will compensate 
and the electron will return to its starting point again with the energy Eo. The 
time taken for the revolution is To, * so the electron will start the next revolution 
at the time Is -+ To and by Eq. (3.25) the rf gain will again be equal to Uo. The 
electron will continue & circulate indefinitely on the design orbit. -- Such an electron 
which passes the reference azimuth at the times fs + j To (where j = 1,2,3, . . . ) 
is called a synchronous electron - because its rotation is synchronous with the 
oscillating rf fields. And Ts is generally called the synchronous phase of the rf 
system. (Of course with a periodic rf there are equivalent synchronous starting 
times once each rf period. ) 

I have clearly assumed that the peak value of Urf is greater than the radiation 
loss U. of the synchronous electron. It follows that there will, in actuality, be 
two possible choices (at least) of Is in each cycle of Urf - one where Urf has a 
positive slope and one where it has a negative slope. Only one of the two - the 
one where the slope is negative - corresponds to a phase of stable equilibrium, 
as you will presently see. So only that one will be designated as the synchronous 
phase zs. You can also see from Fig. 31 that with a rf harmonic number k there 
will be k different synchronous starting times - and therefore, k distinguishable 
synchronous electrons. These k synchronous phases correspond to k possible 
stored bunches of electrons. 
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An electron which is moving with a lateral displacement from the design orbit 
will see somewhat different electric fields than one moving on the design orbit. 
It is generally true, however, that its energy gain in one complete revolution - 
the path integral of the electric force - depends very little on the lateral dis- 
placements. I shall therefore ignore any dependence of the energy gain on such 
lateral displacements - whether they are due to energy deviations or to betatron 
oscillations - and consider only the important variation of the energy gain with 
the starting time f. 

The circulating position of a synchronous electron provides a convenient 
reference point for the study of the longitudinal oscillations of the electrons in a 
bunch. We may indeed refer to the moving position of the synchronous electron 
as the “center” of the bunch and describe the instantaneous azimuthal position of 
any other electron of the bunch by giving its longitudinal displacement y from the 
bunch center. That is, we define 

y(t) = SW - s,(t) (3.26) 

-where s is the azimuthal position of any particular electron and sc refers to the 
position of the bunch center. See Fig. 32. 

X 

FIG. 32--The longitudinal coordinates y and2 of an electron in a bunch. 

For the present discussion I find it somewhat more convenient to describe 
the longitudinal motion by an equivalent variable & defined simply by 

$t) = YWC (3.27) 

which I shall call the time displacement from the center of the bunch. (The time 
displacement is very nearly equal to the time interval At between the arrival of 
an electron at any particular azimuth and the arrival of the synchronous electron. 
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The difference is equal to the change of 2 in the time At =z which because of the 
slow rate of change of g can be ignored. ) Notice that the time displacement z is 
positive when an electron arrives at each azimuth ahead of the synchronous -- 
electron. 

Because of the time variations of the rf accelerating fields only a synchronous 
electron will receive the energy U. each revolution. Any other electron will gain 
in one revolution an energy Urf which depends on its time displacement g. We 
may follow the conventional notation and write 

Urf = eVk ) (3.28) 

where e is the electronic charge and V(T) is called the “rf voltagelf - by analogy 
with a dc accelerating system. The form of V(z) is of course related to U&); 
specifically, 

eV(r) = Urf(Ts -z) (3.29) 

The variation withA is reversed from the variation with f so the energy gain 
function of Fig. 31 would give the V(T) shown in Fig. 33 - where now 3 = 0 

I 
1.11.11 

FIG. 33--The rf voltage function V(T ). 

corresponds to the time displacement of a synchronous electron. Notice that the 
slope of V(z) is positive at T = 0. 

It should perhaps be e&hasized that the effective %oltagef’ of a multiple 
cavity system typical of high energy rings is not simply related to any observable 
electric “voltage” but depends on the relative positions and oscillation phases of 
the various rf cavities in the system. The voltage V(T) may in fact, depend on 
the sense of circulation around the ring and may therefore, be quite different for 
electrons circulating one way around the ring and positrons circulating in the 
opposite direction. 
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We are now ready to consider the energy oscillations of an electron in a 
circulating bunch in a storage ring. Let’s first see qualitatively what will happen. 
Suppose an electron has initially the nominal energy E. but a positive time dis- 
placement 2 - so that it is ahead of the synchronous position. The radiation loss 
depends only on the energy so it will be U. each revolution. But the energy gain 
will be greater than Uo. The electron will gain a little bit of energy each revo- 
lution. But an increase in energy will, by Eq. (3.15), cause its revolution time 
to get longer; and its time advance with respect to the bunch center will, accordingly, 
begin to decrease. After some revolutions the time displacement will decrease 
to zero. But, by then, the electron’s energy will be higher than the nominal energy 

E. - since the electron has continually been gaining energy - so the time dis- 
placement will continue to decrease now toward negative values of g . At negative 
values of ,’ however, the energy gain will be too small to compensate for the 
energy loss by radiation and the electron’s energy will begin to decrease toward 
the nominal energy. When the nominal energy is reached, the time displacement 
will stop decreasing; but, since it is then negative the energy gain per revolution 
is below U. and the energy will begin dropping below Eo. Now the time displace- 
ment will begin returning toward zero. The process will continue until& returns 
to its starting value, at which point the energy will again be Eo. 

Let’s put this description into quantitative terms. First, take the variation 
of the time displacement 2 . It is convenient to keep track of what is happening by 
observing a bunch once each revolution when the bunch center is at some arbitrarily 
chosen reference point. The discussion will be easiest if we take the reference 
point in some field free region (away from any magnets or rf cavities). In Fig. 34 
I show two “pictures” of the same bunch on two successive passages of the reference 
azimuth. In each picture the bunch center is at the reference azimuth so the time 
between the two pictures is just To the revolution time on the design orbit. 

The pictures show also the position of some particular electron of the bunch: 
“Electron A. ” In the first picture Electron A is ahead of the bunch center by the 
distance yI. In the second picture the longitudinal displacement has decreased to 

y2’ Between the two pictures the bunch center has traveled once around the design 
orbit, a distance L =cTo. And since Electron A travels also at the speed c, it 
also has covered a path length equal to L. But if it has an energy deviation E from 
the nominal energy, the path length for one complete revolution (back to y,) - 
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FIG. 34--Longitudinal motion of an electron within a bunch. 

would be, as shown in Section 3.2, greater than L by the amount 61 with 

6Q i?h -=Q! 
L 

E. l 

Electron A fails to reach its previous azimuth by the small distance 6y = -6P, so 

y2 - y1 =.6y = -o! $- L . (3.30) 
0 

The change in2 during the revolution is 

fjy+-&&& ‘I’. 
E. c E. O 

(3.31) 

Since the time between the two pictures is To the time rate-of-change of; is 
8~ /To or 

L&L-,AL 
dt EO 

(3.32) 

A nice simple result. 
Next, the energy variation. During its revolution Electron A has lost by 

radiation the energy U rad($ and gained from the rf system the energy eV&). 
The net change in energy during the revolution is then, 

6U = eVQ1) - Urad(f ) . 
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The rate-of-change of the energy deviation f, - when averaged over a complete 
revolution - is 6U/To so we have that 

(3.34) 

(We may drop the subscripts onL because we may now take it as a continuous 
variable, obtained by a smooth interpolation fromzl to s2 to 23, etc. ) 

The two coupled equations, (3.32) and (3.34) describe the energy oscillations - 
and the associated oscillations of the time displacement - of a stored electron. 
They must be solved together to give the time variation off and of L. 

It will turn out - unfortunately - that the time displacements which are 
associated with small energy deviations need not themselves be *‘small, If in the 
sense that they may span a significant fraction of a complete cycle of the variation 
of V(L). This will be the one instance in which we may not look only at linear 
terms. We shall need at times to take into account the full nonlinear variations 
of V(T). At other times, however, we shall wish to focus our attention on the w 
small energy oscillations which correspond also to small time displacements. 
For such oscillations we shall need to retain only the linear part of the variation 
of V(s). Since the acceleration energy gain at s = 0 is by definition Uo, we may 
then write 

Urf = eV($ = U. + eV07 ry (3.35) 

where V, stands for dV/ch, evaluated atz = 0. 
It is quite common for the rf voltage of a storage ring to have a sinusoidal 

variation with time. In such cases we would have that 

V(z) = V sin wrf(::~-~) (3.36) 

where V is called the “peak rf voltage** and w rfrO is called the %ynchronous rf T 
phase angle. If With our assumptions 

Wrf=2n$=kur. (3.37) 

It also follows that 

and that 
5-f JO - - sin-l (U,/eV) (3.38) 

(3.39) 
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3.5 Small Oscillations 
We are now ready to analyse in detail the energy oscillations of the electrons 

in a bunch. I shall take up first the special case of the small (linearized) oscil- 
lations which occur so long as the variations of: are limited to a small interval 
that corresponds to an approximately linear segment of V(T). And then look later 
(in the following section) at the nonlinear oscillations which occur when the ex- 
cursions of& are large. 

For smallL and 2, we may replace VQ) and Urad(f) by the linear approxima- 
tions of Eqs. (3.35) and (3.23). Then Eq. (3.24) becomes 

g= -!- (evoz - DE) 
TO 

(3.40) 

This equation can now be combined with Eq. (3.32) to give a differential equation 
for : or:. Suppose we chooses. Taking the time derivative of Eq. (3.32) and 
eliminating:, you can show that 

if& + f&y, s + n2T = 0, 

dt2 IL 

t with 

aeGo 
a2 = - 

TOEO 

(2.41) 

(3.42) 

(3.43) 

You will recognize that Eq. (2.43) describes a damped harmonic oscillation 
with the oscillation (angular) frequency fl, and damping coefficient CQ . Since the 
damping rate in a storage ring is always slow ((Y,<< R ) the solution of Eq. (3.41) 
can be written as 

T(t) = A e 
-aJet 

cos (at - Oo) (3.44) *r 

t Careful! There are not enough different letters. The constant CY~ is a new quantity 
quite distinct from the dilation factor a!. 
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with A and 00 arbitrary constants. Or, using the usual complex notation 

,7(t)=? e +% - ifl)t 

where T is a complex constant. 

(3.45) 

Equations (3.40) and (3.32) can be solved instead for &, which,you can show, 
satisfies the same differential equation as J, Eq. (3.41). And so the time variations 
of& are 

g(t) = Fe 
-@, - i0)t 

(3.46) 

From Eq. (3.32) Z’ and 7 are related by 
aEO r=-i- 

o! 7” (3.47) 

(because oe<< 0) and so the oscillations of d and 5 will have a phase difference 
of 7r/2. 

Notice that the oscillation frequency of the small energy oscillations depends 
on the rf system only through Vo. The frequency is proportional to the square 
root of the rf slope at the synchronous phase. The other parameters, o, T 0’ E. 
are characteristics of the guide field (including the energy at which it is operated). 
The damping constant of the energy oscillations o+ - which is the inverse of the 
damping time constant - is proportional to D, which is the rate-of-change of the 
radiation loss with energy. As we shall see, this rate depends on the electron 
energy and on the properties of the guide field. 

I would like to give now some orders of magnitude for the various quantities 
which have been appearing. The skeptical among you may then be happier about 
the approximations which have been made. A storage ring for 1 GeV electrons 
might have the following typical magnitudes for the various (angular) frequencies: 

w r = 2s/To 25 lo7 set -1 

=vw=33w uP r r 
Cl z lo4 set -1 

o! fz 10 set -1 

The large ratios wr/a and n/o+ justify the approximations we have been making. 
In the absence of damping & and& are conjugate variables. In a ‘phase 

diagram, ‘I where 5 is plotted versus T, * the oscillations are described by a point 
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which moves cyclicly around an ellipse. See Fig. 35(a). The ratio of the two 

(a) 

(b) 

FIG. 35--Phase diagram for energy oscillations. (a) Without damping. 
(b) With damping. (The damping rate is very much exaggerated. ) 

semimajor axes of the ellipse would’be - by Eq. (3.45) 

fmax= u= nEg 
S max 171 o 

(3.47) 

If the scales are chosen so that the ellipse becomes a circle, the reference point 
rotates at the constant angular frequency R. With damping, the size of the ellipse 
decreases slowly and the phase trajectory is a slow inward spiral as indicated 
crudely in Fig. 35(b). The phase diagram also makes transparent why the damping 
depends on dU rad/dE. If this derivative is positive, the electron is losing a little 
extra amount of energy while on the upper half of the ellipse, and gaining a little 
extra energy while on the lower half. So it is always “drifting” toward the axis of 
;c and the oscillation amplitude is decreasing - in proportion to dUrad/dE. 

According to our solution, the energy oscillations of all electrons should 
ultimately be completely damped out and they should all end up on top of the syn- 
chronous electron. But we have not yet taken into account the excitation of the 
oscillations by the quantum effects which “shake up” the oscillations and prevent 
them ever from going completely to zero. (They are considered in the next part. ) 
Under stationary conditions any stored electron will typically be found with some 
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residual oscillation amplitude in which there is a balance between the excitation 
and the damping. Since both of these processes are slow we may think of the 
energy oscillation during any brief time as being described by a fixed phase ellipse 
such as the one in Fig. 34(a). 

I should also remind you that the energy oscillations relate not only to the 
longitudinal oscillations (in y or$ of the electrons in a bunch but have also a 
lateral component. According to Eq. (3.3) an energy deviation L results in a 
radical displacement xe which is proportional to 5- and in phase with it. So the 
component xe of the total horizontal displacement oscillates in synchronism with 
the energy oscillations. Generally, this transverse manifestation of the energy 
oscillations has (under stationary conditions) about the same amplitude as the 
betatron oscillations. 

3.6 Large Oscillations ; Energy Aperture 
A storage ring guide field can usually accept only a small range of energies - 

typically only a few percent of the nominal energy - and the magnetic focussing 
forces are usually reasonably linear over the whole energy range. Even much 
smaller energy deviations however, may correspond to rather large oscillations 
of the tiine displacement L. I mean by ‘large” oscillations those for which V(L) 
departs significantly from a linear dependence ong. Such large amplitudes may 
typically occur when the peak rf voltage is not very much larger than the radiation 
loss (as is usually the case at very high energies) or when the rf harmonic number 
k is very large. We should take at least a brief look at the large amplitude OS- 
cillations because they are generally responsible for determining the energy 
“aperture” - or “acceptance” - of a ring. Please keep in mind however, that 
although we shall be dealing with f’largeJ1 time displacements - which may encom- 
pass a major fraction of an rf period - the maximum energy deviations will still 
be %mall , 11 a very small fraction of the energy itself. 

We may begin with the two basic results of the preceding section, Eqs. (3.32) 
and (3.34). As before, we replace Urad by U. + D&, since the energy deviations 
remain small. But we must retain V(g) without any simplification. We get for 
Eq. (3.34) 

is= ev(;) - uo Dg -- 
dt TO TO 

(3.48) 
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If we now express both f and its time derivative in terms of& by using Eq. (3.32) 
we get the following equation. 

2 -+ =- 
dt 

(3.49) 

This equation describes the variation of z for all amplitudes. 
I now ask you to look at another equation which is probably familiar to you: 

d2x dx m - = F(x) - p dt 
dt2 

(3.50) 

It represents the motion in one dimension, x, of a particle of mass m, which 
moves in a conservative force field F(x), and suffers a frictional drag force pro- 
portional to its speed. We can understand Eq. (3.49) by making a direct com- 
parison between it and Eq. (3.50). The motion in e is exactly like the motion of 
a particle of unit mass which moves in the conservative force field 

Fk)= E;. t - - JeV(+r) - U. } , 

and which is subject to a frictional drag proportional to the velocity with a drag 
coefficient D/-To. 

The motion in g can, in general, only be evaluated by a numerical computa- 
tion. We can however, get a good heuristic idea of the motion by considering 
first what happens if the friction term is zero. It is small anyway and can be 
taken into account later as a perturbation. We wish to study the motion 

d2 
-ii = F(g) (3.52) 
dt 

with FCz, given by Eq. (3.51). As you know such an equation is often handled by 
defining a llpotential energy” function @(J-J which is the negative of the integral of 
the force. Let’s define 

(3.53) 

We can then analyze the motion by evoking the principle of conservation of “energy. ” 
At each instant the sum of the ‘potential energytl$(Z) and the %inetic energy” - 
here i ( dg/dt)2 - must be a constant, the “total energy. It The total energy is 
also the maximum Go that can be reached by G(T) - which will occur when $/dt 
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is zero - so we may write that 

+g”= ( J @, - 4JQ (3.54) 

Suppose that the energy gain function eVQ$ has the form shown in Fig. 36(a) 
and that the synchronous energy gain U. is as shown there. Then Q(z) will be as 
drawn in part (b) of the figure. The form shown is quite typical. Notice that there 
is a general downward trend of e(s) with an average slope of -UC. This must 
occur because the rf accelerating fields must integrate to zero over each complete 
cycle (at least over each complete cycle of the lowest frequency present). 

You can now visualize the nature of the time displacement oscillations. The 
motion is like that of a point particle (an l’electronl’) which slides around “onfl the 
hilly surface represented by @$) - where you must of course, think of 5 as a 
horizontal spatial coordinate. First, there is a potential minimum at g= 0. If 
you place an electron there it remains stationary; it is a “synchronous electron. ‘It 
Lf however, you place an electron at g1 - so that it is at point A on the hill - it 
will slide down the hill and coast up the other side to point B. Both A and B are 
at the same height 0, = #QA). At zA and:B the Wnetic energy” will be zero. 
The kinetic energy will reach its maximum value as the electron passesJ= 0. At 
eachg the kinetic energy is given by Eq. (3.54) and from it we can obtain the 
ttvelocityt’ at each T: 

2 = * p b. - @(,)] 1’2 
Remember, now, that according to Eq. (3.32) the %elocityfl is 

so that the energy deviation (of the real electron) at eachL is given by 

y = +-[#o- @($y2 - 

(3.55) 

(3.56) 

t There are of course, stationary points at each potential minimum and these 
correspond to the synchronous electrons at the centers of other bunches (so long 
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FIG. 36--(a) The rf acceleration function ev(T), and (b) the effective 
potential energy f Unction e(T). 
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you can easily see that if you plot a phase diagram - 4 versus x - you will get 
a more-or-less elliptical curve much like the curve a drawn in Fig. 37. You 

SEPARATRIX 1632A37 

FIG. 37--Phase diagram for large oscillations. Bounded energy 
oscillations occur only inside of the separatrix. 

must only use-your common sense to choose the proper sign for the square root 
on each half cycle. 

Also you can see what would happen if you were now to include the friction 
term - the radiation damping. During each oscillation cycle a small amount of 
energy wouldbe lost in a resulting decrease of the total “energy. I1 (You could even 
estimate this loss by, say, approximating the motion by a sinusoid. ) 

It should also be apparent that there will be a maximum amplitude of a stable 
(periodic) oscillation of z. It occurs when the electron can just reach the peak of 
the hill at z3 - corresponding to the point C in Fig. 35(b) - where e(s) takes on 
the value Grnax. An electron with any larger amplitude will sail on over the peak 
and on into the next valley where it will have so much ‘kinetic energy” that it will 
keep on going forever - until it is lost from the storage ring. 

The maximum stable oscillation goes back and forth between the points C and 
D. Notice that the point C is also where eV(;) is again equal to Uo. (To the left 
of C the real electron always gains energy and may have some hope of returning 
to the origin of g ). The other extreme of the oscillation at point D has no special 
quality except that @(T) is again equal to amax, the value at C. The phase diagram 
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of the extreme oscillation is a little peculiar, since both the velocity and the 
acceleration go to zero at C but not at D. The electron l%ngers~l at C - in the 
ideal case for an infinite time! As a result the phase diagram will have a “corner, I1 
as shown by the curve b of Fig. 37. This special curve is called the separatrix 
because it separates the stable oscillations from the unstable trajectories. An 
electron injected into a storage ring with a certain energy deviation hand time 
displacementg corresponding to the point P in Fig 37 will circulate on a more- 
or-less elliptical closed curve (neglecting damping). If an electron is injected 
at a point outside the separatrix it is “lost. It 

You can now see how the rf system can determine the energy aperture of a 
storage ring. Energy deviations larger than *smax - of Fig. 37 - cannot be 
held in the storage ring. Electrons may be lost at smaller energy deviations if 
the lateral displacements xe associated with g cause the electron to collide with 
some physical obstruction that limits the radial aperture. Normally, however, 
the rf limitation sets in first and the energy aperture is st E peak. From Eq. (3.56) 

fimax 1 - = ; (2am,)l'2 
EO 

(3.57) 

If you work out O(z) for the special case of an rf voltage function that is a 
pure sinusoid - as described by Eq. (3.36) - you will find that 

@ max = so F(q) (3.58) 

in which 
q = e9/U 0 (3.60) 

is the overvoltage - namely the ratio of the peak rf voltage to the minimum voltage 
required to store a synchronous electron - and 

F(q) = 2 { d= - cos-‘(l/q) > (3.60) 

The energy aperture smax for this case is then given by 

E 2 max 

( > 
uO 

EO = ncukEg Ftq) 
(3.61) 
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The aperture function F(q) is plotted in Fig. 38. Notice that for large q 

F(q) +2q - TIT. (3.62) 

q- I‘ ,?. II 

FIG. 38--The energy aperture function F(q). 

Finally if you think about what happens if you start an electron outside of the 
energy aperture - say at points above the point D on the curve of G(T) in Fig. 36(b) 
and figure out what their phase trajectories will be you will see that they become 
curves like the ones drawn in Fig. 39. Three successive separatrices are shown 

FIG. 39--Phase trajectories for electrons not captured in a bunch. 
(A qualitative sketch. ) 
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and several examples of unstable trajectories. Again you see that an electron 
once outside a stable region will - barring a fortunate accident - stay outside 
forever. 
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IV. RADIATION DAMPING? 

4.1. Energy Loss 
A relativistic electron which is accelerated in a macroscopic force field will 

radiate electromagnetic energy at a rate which is proportional to the square of 
the accelerating force. The rate depends on the angle between the force and the 

2 electrons velocity and is larger by the factor y = (E/me 22 ) when the force is 
perpendicular to the velocity than when the force is parallel to the velocity. In 
a storage ring the typical longitudinal forces (from the accelerating system) are 
much smaller than the typical transverse magnetic forces and r2 is a large number 
indeed, so we need consider only the radiation effects that accompany the magnetic 
forces. 

Let Py stand for the rate of loss of energy by radiation; it may be written 

Py = 5 ret 
( mc2)3 

E2 F2 1 (4*1) 

where m is the rest mass of the electron, re is the classical electron radius, and 
FI is the magnetic force on the electron. It will be convenient to define the 
constant 

= 8.85 X low5 meter-GeVW3 

Then since FL = ecB, the radiated power is 

e2c3 Py = 2n C E2B2. 
Y 

(4.2) 

(4.3) 

This instantaneous power is proportional to the square of both the energy and the 
local magnetic field strength. It is sometimes useful to express the magnetic 
force in terms of the local radius of curvature p of the trajectory; then 

cc E4 py=z%- 
P 

(4.4) 

t I shall assume that you are familiar with the classical theory of electromagnetic 
radiation by relativistic electrons (see e.g. , 
the results needed for our purposes. 

Ref. 10) and will only review briefly 
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An electron circulating on the design orbit has the nominal energy E. and 
moves on the radius p, = l/G - see Section 2.2. To find the energy U. radiated 
in one revolution we must integrate Py with respect to time once around the ring. 
Since dt = ds/c, 

4 

uo= yLl 
f 

G2(s) ds. (4.5) 

We may write the integral as the mean of G2 multiplied by L = 27rR, the distance 
around the ring: 

Uo= CyE;R<G2>. (4.6) 

For an isomagnetic guide fieldt G = Go = l/p0 along the curved parts of length 
27rpo and zero elsewhere, so 

GO <G2> zF=l 
MO 

(is omag) (4.7) 

and 
C E4 

u. = Y 
PO 

(4.8) 

For a fiired radius po, the.‘energy radiated per turn varies as the fourth 
power of the electron energy. A 1 GeV electron moving on a 5 meter radius 
looses 17 keV each revolution. 

The average power radiated is UO/TO where To= c/BnR is the time elapsed 
during one revolution. For the general guide field 

<p,> = zn 5 E;<G2> (4.9) 

And for an isomagnetic ring, 
4 

EOGO 
4 

<p,>= 2 y- = Lpo 
cCyEO (isomag) 

An electron that is not on the ideal orbit radiates at a different rate. Consider 
first an electron that has the nominal energy E. but is circulating with a betatron 

t See Section 2.2. 
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oscillation. It’s rate of radiation will be different from an electron moving on the 
design orbit only because it moves through a slightly different magnetic field - 
due to its betatron displacement. But at each azimuth its displacement is equally 
often positive or negative. And we have assumed that the fields have only a linear 
variation with displacement. So to first order in the betatron amplitude the radiated --- 
power averaged over a betatron cycle is the same as that of an electron on the -- 
design orbit. 

The same is not true of an electron with an energy different from Eo. That 
case will be analyzed in the next section. 

For ultra-relativistic electrons the radiation is emitted primarily along the 
direction of motion. Most of the radiation is emitted within the angle l/y. The 
radiation reaction force - and therefore, the accompanying momentum change - 
is exactly opposite to the direction of motion. t The only effect of the radiation is 
then to decrease the energy of the electron without changing its direction of motion. 

4.2. Damping of the Energy Oscillations 
- In Section 3.5 we saw that small energy oscillations were damped at a rate 

proportional to the change of the radiation loss with energy. From Eqs. (2.43) 
and (3.24) the damping coefficient o!e is 

(4.11) 

where U rad is the energy loss per revolution. When the energy of an electron 
deviates from the nominal energy Eo, the energy radiated in one revolution changes 
in part because of the energy change, in part because the electron travels in a 
different magnetic field and in part because its path length is different. Let’s 
look at how dU rad/dE may be evaluated. 

We have already seen that a betatron oscillation does not, to first order, 
change the average power radiated. So to get Urad at any energy we must merely 
integrate the Pr of Eq. (4.3) with respect to time around one complete off-energy 
closed orbit. It will, however, be convenient to change the variable of integration 

t Neglecting quantum effects; see Section 5.1. 
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to s. Then 

urad = JPyd” = f P,, $ ds. (4.12) 

We have earlier evaluated dt/ds, see Eq. (2.15): 

dt= 
ds 

where x is the displacement from the design orbit and p,(s) is the radius of cur- 
vature of the design orbit. Since we are now interested in the energy loss on an 
off-energy closed orbit we should take x = v& /Eo, where g = E - E. and q(s) is 
the off-energy function. See Eq. (2.28). Then 

U 1 
rad = c (4.13) 

We have already looked at this integral for &= 0; it is just Uo. So let’s 
differentiate now, evaluating the derivative at & = 0. 

dU rad 1 -=- 
dE c (4.14) 

where the subscript rrOf’ on the curly brackets means that all quantities in the 
integrand are to be evaluated on the design orbit, and at the energy Eo. From 
Eq. (4.3) Py is proportional to the product E2B2 - and remember that when E 
changes, the orbit moves to a different location so that B also changes. We may 
then write that 

But 
dB dx dB 17 dB --=- - 
dE=dEdx Eodx’ 

where dB/dx is a property of the guide field. Putting these last two together and 
into Eq. (4.14) 

dU rad 1 - =- 
dE c 
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The integral of the first term yields just 2UO/E0 so our result for the variation 
of the radiated energy is 

~=~~+&--f/qP,(+$ %)/6ds] (4.15) 

We may now write for the damping constant: 

dUrad ‘0 “c=l-=--. 
2To dE 2TOE0 

(2 +a 

with 

(4.16) 

(4.17) 

Taking Py and U. from Eqs. (4.3) and (4.8) and expressing B and dB/dx in terms 
of G(s) and K1(s) as defined in Section 2.2, we may rewrite QJ as 

/.&= h/G2 +2K1)ds 
G2ds 

(4.18) 

This form makes clearer the fact that g is just a number which is a property of 
the total guide field configuration -: obtained from integrations around the ring of 
expressions involving only the guide field functions G, K1, and t7. The number g 
is typically a positive number quite a bit smaller than 1. 

Equation (4.16) has a nice physical interpretation. Since CN is usually small 
we have the approximate relation: 

% 
uO W-----Z 

<p,> 

EOTO E. 
(4.19) 

where <P,> is the average rate of energy loss. The damping time constant for 
energy oscillations - which is the inverse of oe - is just the time it takes an --BP- 
electron & radiate away its total energy! -- 

The expression above for C?Zj becomes simpler if the guide field is isomagnetic. 
Then G(s) is either zero or equal to some constant in the magnets and the integrals 
extend only over the magnets. Equation (4.18) becomes 

~3 = & Lag T(S) { Gf, + 2K1(s)} ds (isomag) (4.20) 

- 102 - 



If the guide field is also “separated function, ” the magnets have no gradients and 

G20 %I== /M .&l(s) ds ( 
isomag. 
sep. func. 1 

(4.21) 

The integral is familiar; it appeared earlier when we calculated the dilation factor 
a! for an isomagnetic guide field. Using Eqs. (3.13) and (3.14) 

fiBa= G0(77>Mag = GOaR = g &!z&c.) (4.22) 

For this type of ring, the number g is just the dilation factor a! increased by the 
ratio of the gross orbit radius R to the magnetic radius pg. Typical values for 
these parameters of a ring might be: 

o! % 0.05; R/p0 x 3; g = 0.15. 

Recapitulating, for energy oscillations in an isomagnetic, separated function guide 
field, the damping coefficient for energy oscillations is 

4.3. Damping of Betatron Oscillations 
It is now time to take a look at the so-called radiation damping of the betatron 

oscillations. I shall give here only an approximate treatment, but using a method 
which can - with only a bit of tedious algebra - be extended to an exact calculation. 
The exact result is, in any case, obtained more easily by a general theorem that 
will be discussed in the next section. 

Let’s look first at the vertical betatron oscillations. (The notation will be 
the one used in Part II. ) I shall approximate the motion by ignoring the variation 
of p with s, then I may write (see Section 2.8) 

z = A cos $, z’ = 4 sin $, 
P 

(4.24) 

where + is s/p. The amplitude A of the oscillations can be obtained from z and 
z1 at any instant by 

A2 = z2 + (Pz’)~ (4.25) 
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Suppose we are looking at an electron of energy E. - which is then oscillating 
vertically about the design orbit. In any element of azimuth 6s the electron will 
lose by radiation the small amount of energy 6E. Its momentum vectorp will be 
changed by 82 and, as was remarked earlier, 6 E is parallel (and opposite) top, 
so Isgl = c8E. See Fig. 40(a). The radiation loss does not change either the 

‘S 

FIG. 40--Effect of an energy change on the vertical betatron oscillations: 
(a) for radiation loss, (b) for rf acceleration. 

displacement or the slope of the trajectory; and so the amplitude A is unchanged 
by the radiation. (There is a small effect due to the fact that the effective focus- 
sing forces and, therefore, also /3 are changed with a change of energy but this 
so-called “adiabatic” damping effect is of second order and can, anyway, be 
neglected since the energy is not changing on the average when the rf acceleration 
is also taken into account. ) 

Notice now, that the effect of the rf accelerating force is quite different. 
This force is, on the average, parallel to the design orbit. Then the momentum 
increment, 8$ received in the azimuthal element 6s is no longer exactly parallel 
tog. See Fig. 40(b). Let’s write p, for the component of E perpendicular to the 
design orbit; then, since the angles are small we may write 

pl z’ = - 
P 

Again, the accelerating force doesn’t change z. But now it does change z’ which 
goes over to 

z’ - pl -=; (l+?)=z’(l-&P). 
P+6P 
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The change in z’ is 
(4.27) 

There is a corresponding change in the amplitude A; 

A6A = p2z 6~’ = -(pz’) 2 6E E (4.28) 

Now the phase of the oscillation at the arrival of the electron at the point s is 
arbitrary (and all values between 0 and 27r are equally probable) so we should 
inquire only about the average change in A. The average of (z’)~ is A2/2p2, so 

A<6A> = - $ E (4.29) 
0 

Suppose we now sum over all the elements of acceleration gain in one revo- 
lution. Since all of the 6E must add up to the radiation loss Uo, we find for the 
change AA that occurs in A during one revolution (due to the rf acceleration): 

Since AA in each revolution 

AA UO -=-- 
A 2E0 

(4.30) 

time To is proportional to A, the motion is exponentially 
damped - as e raz’; . That is, 

1dA AA uO --z-z _- 
A dt AT0 2EOT0 

so the damping coefficient is 

uO o! z-z 
<p,> 

Z 2EOT0 2E0 ’ 

(4.31) 

(4.32) 

You can show that an exact calculation - using the full-blown form for the vertical 
betatron oscillation - yields the same result. Notice that the damping rate for 
the vertical oscillations is just l/2 the typical rate for the energy oscillations 
(when g is small); see Eq. (4.20). 

It is amusing to notice that the “radiation ” damping does not occur in the radi- 
ation process, but rather in the process of energy gain from the rf system. One 
might question the appropriateness of the name “radiation damping.” But on 
second thought, there would be no opportunity for damping by the rf fields if there 
were not the necessity to compensate for the energy loss by radiation. So the 
name “radiation damping” is not so bad. 
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Now let’s turn to the radiation effects on the radial betatron oscillations. 
You might at first, think that the radial betatron oscillations would be radiation 
damped in the, same way as the vertical ones. But there are additional complica- 
tions so we shall have to treat them as a new problem. One new element arises 
from the change in the betatron displacement that occurs when there is an energy 
change. Remember that the total radial displacement x is the sum of two parts: 
the displacement xe of the off-energy closed orbit, plus the betatron displacement 
x 

P 
with respect to the closed orbit, 

x=xc+x . 
P 

(4.33) 

When the energy of an electron changes by SE, there is a change of xE by the 
amount, see Eq. (2.28), 

But since the position in space of the electron is not changed by a finite momentum 
impulse, the total x does not change, so there must be a compensatory change in 
lip. That is, from Eq. (4.33) 

6s = 6.x, + ““p = 0, 

from which 

“xp = -6x,=-Tg 
0 

(4.35) 

When there is an energy change, the electron doesn’t instantaneously move, but 
the reference axis of its oscillations does and the displacement with respect to 
that axis is therefore changed - as is illustrated in Fig. 41. -- 

Something similar occurs for the betatron slope. Corresponding to Eq. (4.33) 
we must have 

x’ = x’ + x’ 
E P’ 

(4.36) 

Only now, an elementary impulse may change the total x1 by some 6x’ so we should 
have for the change in the betatron slope 

i3x; = 6x’ - “xl (4.37) 
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FIG. 41--Effect of a sudden energy change at so on the betatron displacement. 

T-aking the derivative XL from Eq. (2.28), 

ax; = 6x1 - T’ g 
0 

(4.38) 

where 7’ is, of course, dr]/ds. Even if 6x’ were zero, a change in the slope of 

xE: - the baseline of the oscillations - would produce a change in the slope of the 
betatron oscillation. 

Still an additional complication arises from the curvature of the reference 
orbit. The positive and negative halves of a betatron oscillation occur in equal 
intervals of s, but the electron travels a greater path length on the positive swing 
than on the negative swing - see Eq. (3.7). Although the net effect on the path 
length is zero, over a complete oscillation, there is, in general, a different amount 
of energy lost by radiation during the two halves of an oscillation. And the ampli- 
tude of the oscillation is thereby affected. 

Now let’s apply these ideas to the radiation loss 6E in an azimuthal element 
6s. A precise calculation would proceed from the changes in x and x1 found in 
Eqs. (4.35) and (4.38). In keeping with the approximations made earlier in this 
section, however, I am going to make the simplifying assumption that q is a 
constant, so that 77’ = 0; and write the variation of x 

P 
with s in the same form that 
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I took for z ; namely, 

“P = ACOS$I; x;= p A sin @. (4.39) 

This time we have that 
A&A = X~ ““p + x; “x;/p2 , (4.40) 

and since only 6x P is different from zero, 
A6A = -xp q: (4.41) 

Again let’s take the energy change 6E as the radiation loss in an azimuthal 
element 6s. For the z-motion we assumed that the electron was always moving 
with zero radial displacement so the rate of radiation loss was the same (to first 
order in z) as the rate of energy loss on the design orbit. Things are different 
for the x-motion if the magnets have a field gradient. To simplify the discussion 
here I will restrict consideration to an isomagnetic and separated function guide 
field (see Section 2.2). In a separated function machine the rate of radiation loss 
is independent of x - to first order. t I may then take that (for an electron of 
the nominal energy) the rate of radiation loss P?(s) does not depend on x, but only 
on s. The energy change in a path element& is then 

P 
a&=- +J (4.42) 

Taking for M the expression in (2.15), 

(4.43) 

Combining this result with Eq. (4.41) we have for the amplitude change, 

(4.44) 

Again we are interested only in the expectation value of 6A - the average over all 
phase angles $. The expectation value of x 

P 
is zero and of x2 is A2/2; we get that P 

60 = rl ?L as 
A 2Ps q) l 

(4.45) 

Since I am assuming an isomagnetic guide field wherever Py is different from zero 
p = p, = l/Go and we can easily sum up the effect at each As to get the change AA 

f There is only a field gradient in the quadrupoles; where B is proportional to x. 
Since the rate of radiation varies is B2 there is no first order effect. 
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in one complete revolution. The sum of all Py s/c is just the energy loss U. in 
one complete turn. So we have for the effect of the radiation 

rl uO =-- 
2P~ EO 

(4.46) 

Observe that the sign on the right hand side is positive. There is an increase of 
the amplitude due to the radiation! 

Fortunately, this is only part of the story. We must also take into account 
the effect of the rf acceleration. For it however, there is no corresponding “path 
length” effect. Generally the rf cavities are located in places where p = co ; but 
in any case, it is a property of such cavities that the energy gain is (to first order 
at least) independent of the betatron displacement. The calculation of the contribution 

from the rf acceleration goes exactly the same as for the vertical oscillations with 
the result shown in Eq. (4.31). To get the total effect in one revolution we must 
add the contributions from the radiation loss and from the acceleration to get 

which gives for -the damping coefficient ax of the radial oscillations 

(4.48) 

A precise calculation for a separated function isomagnetic guide field gives exactly 
the same result, if we replace 7 by <q>Mag, the mean value of q( s ) in the magnets. 
But recalling Eq. (3.14), (q>IvIag = CYR so 

ax= 1-g ( 1 
uO 

( 
isomag. 

PO 2EOT0 sep. func. 1 
(4.49) 

Provided aR/PO is less than l- as it usually is - the damping coefficient is 
positive and the radial oscillations are damped. But there is an ffantidampingff 
effect of the radiation - the term @R/p - 0 which counteracts somewhat the posi- 
tive damping from the rf system. So long as the antidamping term is small no 
harm is done. 

If you compare Eq. (4.49) with the results of the preceding section you will 
see that we may also write our result in terms of the parameter C@ defined there: 

uO CY 
X = t1 - ga) 2EOT0 (general) (4.50) 
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Although we have demonstrated this result only for a special kind of guide field 
(and with some approximations) Eq. (4.50), it turns out, is exactly true for x -- 
guide field. That is, if we had in our treatment kept account of the effect of the 
variation of q with s we would have found that in place of 7/p. in Eq. (4.48) we 
would have the complete expression for 9 in Eq. (4.17). More will be said about 
this interesting “coincidence” in the next section. 

4.4. Radiation Damping Rates 
Radiation damping effects have now been considered for all three degrees of 

freedom of an electron in a bunch: the two transverse betatron displacements 
x and z and the energy oscillations - 
P P which show up also in associated oscil- 

lations of 2 and xe . Each of the three oscillation modes has a natural exponential 
decay with damping coefficients oi (with i = x, z, or E) that can be conveniently 
expressed as 

<p > 
‘yi = Jioo = Ji -&- 

0 
(4.51) 

with 
Jx=l-g; Jz = 1, J,=2+a. (4.52) 

The damping time constants are just l/cri so 

2E0 
7i= Ji<PY> 

For an isomagnetic storage ring <P,> may be taken from Eq. (4.10) then 

7 - 4n Rpo 
i C Y Ji’“o 

(isomag. ) (4.54) 

where Cy is the constant defined in Eq. (4.2). In a given storage ring the damping 
time constants vary as the inverse cube of the energy. 

The number GB is a property of the guide field and may be evaluated from one 
of the equations (2. lo), (2.12), or (2.13). The numbers Ji are known as the 
damping partiti on numbers since their sum is a constant: 

c Ji=Jx+Jz+Je =4. (4.55) 
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Although I have not actually proved this last result, it does indeed follow from 
detailed calculations for a general guide field. (See e.g., Ref. 5.) Such calcu- 
lations are, however, not really necessary because Robinson 12 has proved on 
very general grounds a theorem that yields Eq. (4.55) directly. The theorem 
required only that all of the fields acting on the particle are determined a priori 
and are not in any way influenced by the motion of the electron. These conditions 
apply if we consider only the prescribed magnetic and rf fields of a storage ring. 

The damping rates for an individual electron - and more importantly, for 
the coherent motion of a clump of them - can be modified from the above numbers 
if additional forces are introduced that depend on the details of the electron motion. ’ 
Such forces may, for example, come from image currents in the wall of the vacuum 
chamber or from currents induced by the beam in rf cavities, or from forces from 
auxiliary electrode systems powered via amplifiers from detectors that sense the 
displacement of the electrons. In actual rings, the first effect has led to unstable 
transverse coherent oscillations and the last one has been used to tame them. The 
se-cond effect has been both the cause and the cure of unstable longitudinal oscilla- 
tions of a bunch. Since such effects require the coherent cooperation of many 
electrons they are beyond the scope of the report and will not be considered further. 

From Eq. (4.55) one would also obtain the more particular result that Jx+ Je = 3. 
This result depends, however, on one restrictive assumption - that the design 
orbit lies in a plane and that the magnetic fields are symmetric with respect to that 
plane. We have already referred briefly (at the end of Section 3.1) to one of the 
consequences of dropping this assumption. Off-energy orbits may generally have 
%ertical” displacements ze as well as the “radial” displacements xe. Most of 
the developments made in this report become more complicated and, in particular, 
the partition numbers will not be given by (4.54). The konservation” theorem 
Eq. (4.55) will, however, remain valid. 

Two other remarks about the consequences of this theorem are perhaps in 
order. First, for “alternating gradient” guide fields - such as those used univer- 
sally in electron synchrotrons and in most proton synchrotrons - the number C@ 
is greater than 1. As a consequence the radial betatron oscillations are antidamped- 
and grow exponentially with time at a fixed energy. This effect has not been grave 
for the synchrotrons because the amplitude growth due to the antidamping is quite 
small during the acceleration time. It has however, posed a special problem in 
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the adaptation of the CEA synchrotron for use as a storage ring. For this adapta- 
tion it has been necessary to install special magnetic devices designed to modify 
9 without affecting significantly the other characteristics of the ring. 

Finally, you will appreciate that no real guide ever satisfies exactly the postu- 
lated symmetry of the fields with respect to the plane of the design orbit. The ac- 
cidental asymmetries are generally small but they will, in general, lead to some 
coupling of the horizontal and vertical betatron oscillations. When such coupling 
is taken into account, x and z are no longer the coordinates of the normal modes. 
And the new normal modes will have damping coefficients which are somewhat 
different from ox and oz. 
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V. RADIATION EXCITATION 

5.1. Quantum Radiation 
Until now we have considered only the total energy loss due to synchrotron 

radiation - assuming implicitly that the energy loss is a continuous process. 
Such a view is all right for a first approximation since the energy loss is indeed 
fairly smooth on the average. But we know that all electromagnetic radiation 
occurs in quanta of discrete energy. And this quantization of the energy loss has 
significant effects on the behavior of electrons in a storage ring. 

Each time a quantum is emitted the energy of the electron makes a small 
discontinuous jump. As we shall see later, the most significant quanta have energies 
which range from that of visible light out into soft x-rays. Although one is on 
shaky ground in trying to speak too quantitatively about quantum effects in a classi- 
cal way, the following quasi-classical statements can be rigorously justified. 
First, the ?ime” during which a typical quantum is emitted is certainly no greater 
than p /yc, where p is the radius of curvature of the trajectory and y is the electron 
energy in units of its rest energy. Since this time is much less than any other 
relevant time - such as the period of a betatron or synchrotron oscillation - we 
may consider-it to be instantaneousI Second, the emission times of the individual 
quanta are statistically independent. Since the energy change in any emission 
event is a very small fraction of the electron energy we may consider that the 
emission of successive quanta is a purely random (that is, Poisson) process. 

The discontinuous energy change from the emission of a quantum disturbs the 
trajectory of the electron. The cumulative effect of many such disturbances intro- 
duces a kind of %oiseff into the various oscillation modes causing their amplitudes 
to grow until the quantum excitation is, on the average, balanced by the damping 
of the oscillations. This process will be considered in detail for both betatron 
and energy oscillations in later sections. 

A remark is perhaps required here about damping. We have, in the preceding 
sections, related the damping effects to radiation. You should notice that the 
damping depends only on the average rate of emission of energy and not on any of 
its other statistical properties. So when considering quantum effects we may take 
the same damping we have already found - understanding that it is due to the 
average rate of energy loss in all quantum energies. The excitation effects will 
be due to the fluctuations in the radiation about its average rate. (One could, of 
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course, treat both the average and fluctuation effects together, but to do so would 
only add unwarranted complications. ) 

In considering the effects of radiation fluctuations on the oscillations of an 
electron in a storage ring we shall need to know certain properties of the quan- 
tized radiation. I wish now to look at these properties. 

From the classical view, the synchrotron radiation is emitted with a continuous 
spectrum of frequencies. (The frequency spectrum was first calculated by 
Schwinger , 13 a derivation is also given in Jackson. lo) Consider the radiation 
emitted by an electron in some finite time interval At. Suppose we examine the 
radiation field which corresponds - by a suitable time retardation - to the emis- 
sion in At, and for each direction in space, make a Fourier analysis of the radi- 
ation field. The frequency spectrum will, in general, be different for each direc- 
tion. But we may average the spectrum over all directions to define a radiated 
power spectrum g’(w) such that P(W)& At is the energy radiated in At with angu- 
lar frequencies between w and o + dw . Clearly, the definition makes sense only 
if At is sufficiently large that most of the energy is found in frequencies greater 
than l/At. Recall now, that the radiation is typically emitted within the angle l/y 
of the electron’s velocity vector. Such an angle is swept out in the time p/ye, 

where p is the local radius of curvature of the trajectory. So a time interval 
zp/-yc should contain most of the impulse of radiation; and it should, therefore, 
represent a suitable magnitude for At. We shall see later that it is indeed so. 

With the definition given for P(o) we may permit it to be a slowly varying 
function of time and we shall not be in any difficulty provided only thatP(w) (and 
therefore, p or y on which it depends) does not change appreciably in At. This 
condition is generally satisfied? for storage rings, so we may consider that P(o) 
is an “instantaneous” power spectrum whose integral over w is the instantaneous 
radiated power defined earlier, 

py = / TP(u, dbl. 
0 

(5.1) 

t The important results of this part actually require only that p and y do not change 
appreciably in a time p/gc which is much smaller than At. 
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The power spectrum can be written in the convenient form: 

with wc a constant defined by 

222 
% 2p 

(5.2) 

(5.3) 

The number oc is called the critical frequency, t notice that it is approximately 
equal to y3 times the angular revolution frequency of the electron. The spectral 
function S(w/wc) is a pure algebraic function of its argument which can be expressed 
by W) = (5.4) 

where K5,3 is a modified Bessel function. It follows from the definition of Eq. (5.2) 
that S is normalized so that 

00 

s ww4 = 1 (5.5) 
0 

The form of the spectral function is shown in Fig. 42. Its behavior for large 
and for small arguments - which can easily be obtained from the asymptotic 
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FIG. 42--Normalized power spectrum S and photon number spectrum 
F of synchrotron radiation. 

t Caution! Some writers,for example Jackson, define the critical frequency with a 
different numerical factor. 
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behavior of the Bessel function - is sometimes useful. 

For t<<l; w3 z 1.34 $‘3 

For 4 >> 1; (5.6) 

The power spectrum y(w) is obtained from S(t) by Eq. (5.2). Don’t forget 
that both P 

Y 
- see Eq. (4.4) - and wc depend on both y and p. It is clear from 

Fig. 42 that most of the power is found in frequencies near tic. (Since oc is y2 
larger than the inverse of the At defined earlier, the assumptions made there are 
now justified. ) 

You know that electromagnetic radiation at the angular frequency w is emitted 
in quanta of energy u = k , where -% is Plank’s constant reduced by 27r (Ii = h/2n = 
6.85 X lo-l6 eV-set). Let n(u)du be the number of quanta emitted per unit time 
with energies between u and u + du. The power emitted in these quanta is un(u)du, 
which must be the same as the power emitted in the frequency interval dw = d&‘i 
at the frequency w = u/Ii; namely, 

m(u) du = sl(u/@ du/+.i (5-V 

Taking‘g(w)- from Eq. (5.2)’ the quantum distribution function can be written as 

(5.8) 

with 

u =~#$ ) 
C (5.9) 

WI = ; St& (5.10) 

Like the frequency spectrum, the quantum spectrum is, apart from the scale factor 
P h2 Y c’ 

a universal function of the ratio u/u,. 
The function F(t) is also shown in Fig. 42. The rate of emission of quanta 

-2/3 per unit energy interval diverges at low energies. t But only as u , so the 

t The spectrum is, anyway, questionable for u < uc/y”, according to the conditions 
mentioned earlier. 
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rate of emission of the quanta 
integral over u - is finite. 

Let’s let A’ stand for the 

in any finite interval of quantum energies - an 

total rate of emission of quanta (of all energies): 

&= Jak(u)du . (5.11) 
From the asymptotic expressions for S(4) in (5.6), its complete integral is clearly 
e 1. It is actually 15J38’so 

(5.12) 

The mean quantum energy’would be defined: 

<u> = -$ $k(u)du . 

The integral is just Py so the mean quantum energy is 

<u>= J- 
15 J-x 

uc= (0.32...) uc 

(5.13) 

(5.14) 

Speaking roughly, we may say that the radiation is emitted in quanta of a typical 
energy about uc, and at a mean rate of about P /u . 

Y c 
For a 1 GeV electron moving 

on a 5 meter radius trajectory, -.’ 

P = 1 7 X loll eV set-l 
Y - , 

U 
C 

= 437 eV, 

JV= 3.2 P 
r/ 

uc= 1.3 XlO’sec -1 . 

It is amusing to notice that the mean number of quanta emitted per radian of -- 
trajectory depends only on the electron energy. It is, in fact, very nearly equal 
to simply the product of y and the fine structure constant: 

(Mean number of quanta per radian) = -?- -Y- 
2fi 137 

(5.15) 

For a 1 GeV electron, the number is about 20. The actual number in any time 
interval fluctuates as the Poisson distribution corresponding to the mean number. 
It is then understandable that with such small numbers the fluctuations may be 
significant. 

We shall see later that the quantum excitation of electron oscillations in a 
storage ring depends not only on the mean rate of quantum emission, but also on 
the mean-square quantum energy. We would expect <u2> to be about equal to 2; 
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as indeed it is. If you work it out in detail you will find that 

<u2> =$+lz . (5.16) 

The quantity that will enter in the quantum excitation of oscillations is in fact, the 
product of the mean square quantum energy with the mean rate&; namely. 

& < u2> = &-u2n(u)du . (5.17) 

It will be convenient to write, using Eq. (5.12) 

&<u2>= c u P 
UC Y 

with 

cu= 55 
24 fi 

= 1.32 .., 

(5.18) 

It is important to keep in mind that both uc and Py are functions of the electron 
energy and of the local radius of curvature p of the trajectory. Taking uc from 
Eq. (5.9) and Py from Eq. (4.4) 

(5.20) 

At a fixed radius the quantum excitation varies as the seventh power of the energy! 

5.2. Energy Fluctuations 
I turn now to an examination of the effect of quantum emission on the energy 

oscillations of a stored electron. When a quantum of energy u is emitted, the 
energy of the electron is suddenly decreased by the amount u. This impulsive 
disturbance sets up a small energy oscillation. The cumulative effect of many 
such disturbances - occurring at random times - causes the energy oscillation 
to grow (as in a random walk). The growth is limited - on the average - by the 
damping; and under stationary conditions the energy oscillations of any particular 
electron will fluctuate about some mean amplitude. I want now to look at these 
fluctuating energy oscillations. 

At first, I shall be concerned only with one measure of the typical energy 
oscillation - namely the root-mean-square deviation from the mean energy - 
without considering in detail the probability distribution of the energy deviation. 
The nature of the distribution will be considered later on. 
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In Section 3.5 we looked at the small oscillations of the energy deviation of 
a stored electron. In the absence of any disturbances, and ignoring for the moment 
any damping, the energy deviation f is described by 

ifI(t- to) 
5=Aoe (5.21) 

where R is the (real) synchrotron frequency and the amplitude A0 is a real number. 
Now suppose that at some instant ti the energy is suddenly decreased the amount 
u - by a quantum emission. After ti the energy will go as 

in(t - to) i0(t - ti) 
g = Age - ue (5.22) 

See Fig. 43. This new oscillation can be written as 

f= Ale 
iCl(t - tI) 

(5.23) 

1632A43 

FIG. 43--Effect on the energy oscillations of the emission of a 
quantum of energy u. 

w heret 

A; = A”0 + u2 - 2AOu cos n(ti - to) (5.24) 

f Obtained from A2 = rd. 
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and tl is some time displacement of no concern to us now. The quantum emission 
changes the amplitude of the oscillation to a new value which depends on the initial 
amplitude and on (ti - to). Since the time ti at which a quantum emission occurs 
is completely unpredictable - and since we are interested only in the cumulative 
affect of many such events - we should ask only statistical questions. Such as: 
What is the probable amplitude change? In general, the phase (ti - to) is com- 
pletely random and the expectation value of cos41(ti - to) is therefore zero. Then 
the probable amplitude change due to the quantum event is 

<SAC> =<A; - Ai>= u2 (5.25) 

Notice that our result says that the probable change in A2, which occurs when we 
add with random phase a new increment of oscillation of amplitude u, is just u2 - 
the same result we would have obtained for 8A2 if we had started with A. = 0. 

Suppose now that such quantum events occur in a random time sequence at 
the mean rate JV (number per unit time). Each event changes A2 by u2; and since 
the mean time between events is l/., we expect that 

< dt 
-> = al2 dA2 (5.26) 

But the probable rate-of-change of A” is equal to the rate-of-change of the 
probable value of A2 or 

d<A2> = Ju2 
dt (5.27) 

In addition to exciting energy oscillations, the quantized energy losses contri- 
bute to a cumulative energy change. We have however, considered such average 
effects earlier. Their effect is to produce the energy oscillations as well as to 
cause the slow exponential damping of the amplitude A with a time constant TV = l/~;. 
With such damping the amplitude decreases at the rate A/T~ ; or its square at the 
rate 2A2/,, . The probable amplitude must be similarly decreased by the damping 
which would contribute to the rate-of-change of <A2> the amount 

da2> = _ 2 <A2> 
dt 

. 
rE 

(5.28) 

When both quantum excitation and damping are at work - and other conditions are 
stationary - the rates of Eqs. (5.27) and (5.28) must sum to zero. We find that 
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the probable value 

For the sinusoidal 
value of f is zero, 

of A2 is given by 

<A2>= (5.29) 

energy oscillations (as they are very nearly) the expectation 
and of its square - which we shall call &z - is just l/2 the 

probable amplitude squared: 

2 
uE 

= <e2>,<&=AT Jpu2 
2 4 E (5.30) 

This then, would be the mean-square energy fluctuation in the energy oscillation 
which would be produced by the random emission of quanta all of the same energy 
u. It should correspond approximately to the energy fluctuations in a storage ring 
if we were to put for u, the typical quantum energy uc and for Jt/ the mean rate 
P /u Y c’ 

An approximately equivalent result can be obtained from the following simple 
argument: The typical energy fluctuation comes from the deviation from its mean 
of the number of quanta emitted in one damping time me . The mean number emitted 
iti TE iS dTc , and so the rms deviation from the mean is fi (Poisson distri- 
bution). Since each quantum has about the energy uc, on the average, 

9 “JTTiGpc (5.31) 

The result is roughly the same as Eq. (5.30). It is amusing to notice that, since 
cN”- Py/uc and TE x E /P 

0 Y’ 
we may also write that 

(5.32) 

The energy fluctuation is roughly the geometric mean between the electron energy 
and the critical photon energy! 

Let’s now do a precise calculation which is somewhat more complicated - 
first, because there is a distribution of quantum sizes and second, because both 
the distribution and the mean rate may vary around the storage ring. Returning 
to Eq. (5.28) we should consider separately the contribution to d<A2>/dt from 
each interval of quantum sizes. Those quanta with energies between u and u + Au - 
of which there are n(u)Au - will give the contribution 

= u2n(u) Au (5.33) 
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But since ‘the emission of quanta at the various different energies is also uncor- 
related, each energy will contribute independently to the random-walk growth of 
<A2>. We need only sum the contributions from each interval Au: 

d<A2> = 
dt / 

’ u2n(u) du (5.34) 
0 

You will recognize the integral as just the product &<u2 >considered in the pre- 
ceding section - Eq. (5.17): 

* = Jv<u2>. (5.35) 

The rate of growth just obtained depends on the electron energy - which we 
may take to be the nominal energy E. - and on p, the local radius of curvature 
of the trajectory, both of which may vary around the ring. From our derivation 
we may expect that the time for a %ignificanP change in the amplitude of the 
energy oscillation will be of the order of the damping time constant Te . Since 
both the period of the oscillation M l/a, and the damping time TE are each much 
longer than a revolution time To we may, without injustice, replace the rapidly 
varying quantity&<u2> by its mean value over one revolution of the ring. We ---- -- 
shall also make a negligible error (on the average) if we replace the instantaneous 
radius of curvature p of the trajectory at each azimuth s by the local radius of 
curvature of the design orbit. Taking the average of &<u2> over one revolution 
by integrating with respect to the azimuthal coordinate s, we may definet 

Q, = &-<u2>>, = &+u2>ds. (5.36) 

Following through the rest of the derivation as before we get for the mean-square 
energy fluctuation: 

(5.37) 

The simple form of our result is misleading; the complexities are hidden in 
TE and Q,. Let’s look first at Qe. We need to evaluate Ju<u2> on the design orbit. 

t The index s on the brackets indica%s that the average is taken over the coordinate 
s as distinct from the average of u which is over the distribution in u. 
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Suppose we begin with the form derived in Eq. (5.18). Py on the design orbit is 
obtained from Eq. (4.4) by setting E = E. and (l/p) = G (see Section 2.2), so 

cc 
(Py)design orbit = %? 0 E4G2 ’ 

which may be written - using Eq. (4.9) - as 

(Py)design orbit = 
<P >sG2 

G2 
S 

And UC on the design orbit is from Eq. (5.9), 

(Uc)design orbit = i hc ‘i G. 

(5.38) 

(5.40) 

We have then that 
<P >‘G” 

design orbit = cu l ; ficy;G- 

G2 

. (5.41) 
S 

The only quantity which varies around the design orbit is G so that Q, can be 
written ast 

Q, = ;-. Cufic y; 

Taking TE from Eq. (4.53), 

(5.43) 

we may finally rewrite Eq. (5.37) as 
2 3 Cu%mc3 -$<G3> 

UE = 
4JE <G2> 

(5.44) 

The relative energy spread oe/Eo is usually more significant. We may write 
it as 

= 
C <G3>r2, 

JE <G2> 
(5.45) 

f We may now leave off the subscripts on the average since it is clear that all 
quantities shown are to be averaged over s. I hope it is clear that <G2>, for 
example, means 6 G2( s) ds/L where L is the orbit length. 
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with C - 
q 

which we may call the quantum constant - given by 

3cu.i 55 5 Cq=s = - = 3.84 x lo-l3 
32 fi mc 

meter (5.46) 

It is very nearly, just the Compton wavelength of the electron. 
The quantity <G3 > /Je <G2 > is a geometrical property of the guide field. 

Specifically, 
<G3> 1 #G3(s)ds 
J,<G’> 

=- 
Jo #G2(s)ds ’ 

(5.47) 

It is roughly equal to the inverse of the “typical” radius-of-curvature of the design 
orbit. The result of Eq. (5.45) is then roughly r2 times the ratio of the Compton 
wavelength to the orbit radius. For any ring the quantum induced spread in the 
relative energy deviation - namely ue/Eo varies in direct proportion to the electron 
energy. 

In a storage ring with an isomagnetic guide field (one which has a constant 
radius p. in the magnets and is straight elsewhere) the geometrical expression 
above is just l/J, po, and 

(isomag). (5.48) 

In an isomagnetic storage ring with a 5 meter magnetic radius, 
with an energy of 1 GeV will have an energy spread very nearly 
energy - or about 40 keV. 

electrons stored 
0.04% of the 

5.3. Distribution of the Fluctuations 
The energy deviation ; at any instant t is the result of a super position of the 

contributions from the emission of quanta at all earlier times t i. We may in fact, 
write for g(t) 

z(t) = C uie 
-(t - tibr 

cos qt- ti) , (5.49) 
t<t 
i 

where ui is the energy of the quantum emitted at ti. Since the typical value of g(t) 
is much larger than the typical quantum energy - see Eq. (5.32) - and since the 
times ti are randomly distributed, the sum at -any instant t consists of contributions 
from a large number of small terms which are all statistically independent, and 
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which are positive and negative with equal probability. It is well knownt that the 
result of such a sum is a stochastic quantity whose most probable value is zero 
and which is otherwise distributed as a normal error function - a so-called 
Gaussian distribution. That is the probability w(e)dt that the energy deviation m w 
will be found in an interval dg at 6 is distributed according to 

w(g)d: = 
1 

d-- 27r UE exp ( -8/24 ) de . Ilr 

The parameter ue, often called the standard 
Square spread of the distribution - that is, 
easily be shown by a direct integration: 

9 r+QJ9 

(5.50) 

deviation,is equal to the root-mean- 
the square root of (e2) - as can 

“Ey = J g”w(;)dt: . k --oQ 
(5.51) 

(The distribution function W(E) is properly normalized so that its complete integral 
is equal to 1. ) The standard deviation ue is then, the same quantity we have evalu- 
ated in the preceding section. 

In a stored beam we have,normally, a large number N of stored electrons. 
So long as any interactions among them can be ignored, the distribution of energies 
within the bunch will - under stationary conditions - also be described by Eq. (5.40). 
That is, the number of electrons with energies between 6 and s + dr- will be just 
NW($) dk And the “half-width” of the spread of energies. in the beam is described 

by uE. 
The distribution function of Eq. (5.50) and also our calculation of ue assume 

that the energy oscillations are linear. (With nonlinearities, Eq. (5.49) is not 
correct and the effects of the individual quanta are no longer independent. ) We 
have already seen however, that the energy oscillations are not linear for large 
energy deviations. If the rf voltage function is significantly nonlinear over the 
time displacements that correspond to the likely energy deviations, we must expect 
the probability distribution for f to be distorted from the ideal distribution of 
Eq. (5.50). If, however, the nonlinearity is not too great over the largest part 

f And follows from the Central Limit Theorem of probability theory. 
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of the distribution, we may expect that neither 0; nor the distribution function of 
the energy deviations will be affected very much. 

The distribution of energy deviations just considered implies related distri- 
butions in other parameters of the energy oscillations. The relationships are 
most easily understood by considering the electron’s trajectory in a ‘phase diagram” 
such as the one discussed in Section 3.5. Suppose we describe the state of the 
energy oscillation by giving its energy deviation 2 and its %caled” time displace- 
ment 8, which we define by 

aEO e=(yz. P (5.52) 

a, the angular frequency of the energy oscillation and cy, the dilation factor are 
constants soQ is just a scaled equivalent of s the time displacement coordinate of 
the energy oscillations. (See Section 3.5. ) So long as the damping rate is small, 
8 could equally well be defined by 

(5.53) 

so it may also be viewed as a normalized derivative of 5. We may now represent 
the state of motion of an electronby a point on a two-dimensional graph in which& 
and2 are orthogonal coordinates - see Fig. 44(a) - and in which an oscillation 

(a> 
AN ELECTRON 

FIG. 44--Scaled phase space of the energy oscillations. 
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of constant amplitude would describe a circle. Then so long as the damping and 
the quantum effects are small, we may consider that for any small interval of 
time, : and 2 vary as 

f=Acos c$, (5.54) 

$ =Asin$; (5.55) 
where 

@= .rrt-$,, (5.56) 

and A is slowly varying amplitude. The quantities A and @ are a polar representa- 
tion of the representative point and @ increases as SZt. 

The distribution of energy oscillations of the electrons in a stored bunch can 
now be represented by a distribution of points in the phase plot as indicated 
schematically in Fig. 44b. A complete description of the distribution is given by 
specifying the density +!J($,@ in the g,g plane. That is I,!I(E, B)dede is to represent 
the number of electrons found in the element of area dfdc located at (i,$). We 
already know the projection of $I(:, I$) on the horizontal axis. If there are N elec- 

trons in the bunch it is just NW($). But in onequarter of an oscillation each elec- 
tron rotates one-quarter of a revolution about the origin of the figure. And since 
we are assuming a stationary distribution - that is one with no time variations - 
the projection on the vertical and on the horizontal axes must be identical. It 
must be then, that the number of electrons in an element of area dgdt is given by 

dfda . (5.57) 

The projection on the horizontal axis is 

s 44:, ,e,dg = g..- exp (-$%()d~, 
which agrees with the w(i) of Eq. (5.50). Similarly, the distribution in t is 

$ ue exP (-82&) l 
(5.58) 

We may now ask what is the distribution of oscillations amplitudes. Since 
A2 = g2 +,e2, the density of electrons in the 5 ,i plane at the amplitude A is 
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just 

N 
---em 
2nu~ 

( -A2/2uf) . (5.59) 

If we now let g(A)dA be the number of electrons in an amplitude interval dA at A, 
that number is just 27rAdA times the density at A: 

g(A)dA= E exp(-A2/2ut) . 
U? - 

(5.60) 

(See Fig. 44(c).) The mean-square of A in this distribution is just the <A2> that 
was discussed in the preceding section. By direct integration of A2g(A)dA you can 
see that<A2> = 2u:, as was argued earlier. So the last equation can be written 
as 

&WA = N $> exp (-A2/<A2>)dA. (5.61) 

Suppose we take the number W = A2 as a measure of the ‘*oscillation energy, ,It 
and compute the mean oscillation energy <W>. S ince the energy interval dW cor- 
responds to BAdA, the number of electrons which are found in the interval dW at 
W is 

h(W)dW = ,=$$ exp(-W/<w))dw l (5.62) 

The distribution in oscillation energies is a pure exponential and corresponds to 
the Boltzman distribution of energies in an ensemble of mechanical systems in 
thermal equilibrium - with the characteristic energy <W> given by 

<W) = <A2> = 2~: . (5.63) 

5.4. Bunch Length 
We have just seen that the distribution in the normalized time displacement2 

is as a Gaussian with a standard deviation that is equal to the standard deviation 
ue of the energy oscillations - refer to Eq. (5.50). It follows that the fluctuating 
energy oscillations are accompanied by associated fluctuations in the time 

TW is proportional to - but different by a numerical factor from - the “oscillation 
energy” defined in Section 3.6. 
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displacement T , (II and that the standard deviation 9; of these fluctuations is - see 
Eq. (5.52) - 

For an isomagnetic guide field Eq. (5.45) gives 

(y2 CY2 
u2 = 2 * (isomag). 

7 
JEp 0 

(5.65) 

Taking a2 from Eq. (3.44) 
2 3 

u2 = (rT~E~ s = 27icq oR EO 
7 eiro JEP~ 

- - (isomag). 22 J,P~ e$o (5.66) 
(mc 1 

The spread ; in the time displacement gives when multiplied by c, also the spread 
of longitudinal displacement from the bunch center - or, what we may call the 
bunch half-length. 

If the energy E. of the stored beam in a particular storage ring is varied while 
holding constant the slope of the rf voltage (Go), the bunch length will increase 

2/3 with the energy as E. . However, we shall see later (Section 6.5) that it may be 
advantageous to adjust the rf voltage when changing the energy and, in fact, in such 
a way that the peak rf voltage is kept proportional to Ei. If the rf voltage is sinus- 
oidal, the slope 9, will also vary as Ei and, by Eq. (5.66) the bunch-length will 
then be independent of energy. The constant bunch length, 2cuT is in such a case, 
typically about 10% of the distance between bunch centers. 

In several of the storage rings that have been constructed to date the bunch 
length is observed to be larger than is predicted here by a significant factor 
which depends on the number of electrons in the stored bunch. The mechanism 
responsible for this anomalous lengthening is not understood at this time. 

5.5. Beam Width 
The emission of discrete quanta in the synchrotron radiation will also excite 

random betatron oscillations and these quantum-induced oscillations are responsible 
for the lateral extent of a stored electron beam. Let’s look first at the quantum 
effects on the horizontal betatron oscillations. (As in the preceding section, I will 
consider first only the gross statistical properties of the fluctuations.) 
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In Section 4.3 we considered the effect of a small radiation loss 6E - which 
was assumed there to occur continuously in a path length 61- under the assump- 
tion that the momentum loss was parallel to the direction of motion. We may take 
over the results obtained there and adapt them to the case of quantum emission by 
setting 6E to the quantum energy u - keeping for the moment the assumption that 
quantum emission gives only a change in the magnitude of the momentum and not 
in its direction. You will recall from Section 4.3 that a change in energy is ac- 
companied by a change in the betatron displacement only because of the sudden 
displacement of the reference orbit - the energy displaced orbit - about which 
the betatron oscillations occur. Taking the results of Eqs. (4.35) and (4.38), the 
emission of a quantum of energy u will result in a change 6x 

P 
in the betatron dis- 

placement and a change 6x1 
P 

in the betatron slope given by 

rsxp = -?)+ ; 
0 

sxtp = - 9' + 
0 

(5.67) 

The effect that such a sudden disturbance will have on the betatron oscillations 
-will depend on where in the storage ring the quantum emission occurs - and on 
where we observe the oscillation. From Section 2.6 we know how to relate the 
oscillations -observed at one azimuth to those that will be found at another azimuth; 
so we can for convenience, evaluate the quantum effects by what they do to the 
oscillations at some fixed azimuth - say at s1 - and later transfer the result to 
any other azimuth. Our program can then be the following: (1) We ask what is 
the effect at sI of a quantum emission that occurs at some other azimuth s2. (2) 
We average over all quanta which might be emitted at s2. (3) We sum the contri- 
butions from all possible values of s2. 

In Section 2.6 we considered the motion which resulted at s1 from the “initial 
conditions” x2 and xi at s2, the result can be written in the form? 

x 
P 

(sl, tj) = a cl cos $. 
3 

(5.68) 

where the qj are the oscillation phases at the times tj of the successive passages 
of the electron by the azimuth s p 1’ 1 is the betatron function at si and a is an - 

T It will be understood that here p means p,. 
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invariant amplitude factor given by 

a2 = & 4 + p2x; -; ix2 
( ( 

2 
p >) 

. (5.69) 

If we put for x2 and xi the disturbance of Eq. (5.67) and write Sa2 for the resulting 
amplitude, we have that the emission of a quantum of energy u at s2 gives the 
amplitude 

U2 2 6a2 = 7 k r12 + 
EO 

{ ( P2rh - +Pp2)2} - (5.70) 

All of the s-dependent quantities on the right-hand-side are to be evaluated at s2, 
so let’s define a new function of s: 

X(s) = j{q2 + (p7y - ; t pT)j (5.71) 

which is specified by the properties of the guide field. Then Eq. (5.70) becomes 
simply n 

Sa2 = u” E 3w5). 
0 

(5.72) 

This result gives the amplitude produced when we start with zero amplitude. 
What happens if we already have some amplitude 2, and then a quantum is emitted? 
As we saw at the beginning of Section 4.6 for the amplitude A, so long as there is 
no correlation between the phase of the initial oscillation and the occurrence of 
the quantum event - that is, if the quantum emission is completely random - then 
the change in the probable value of a2 is just the Sa2 we have calculated. We may, 
therefore, say that the change in the probable invariant amplitude of the betatron 
oscillation caused by the emission of a quantum of energy u at s2 will be 

8(a2> = 
2 

% 3m2)’ (5.73) 
EO 

We now know what will be the result if a quantum is emitted at s2; we must 
next ask what is the likelihood that such an event will occur. Consider what hap- 
pens as the electron travels the distance As at s2 - which will take the time 
At = As/c. Taking the definitions of Section 4.5, the probability that a quantum 
will be emitted is &As/c, and the probable value of u2 for the quantum emitted 
is <u2>. So the change in the probable value of a2 due to the element As of the 
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trajectory can be written as 

(5.74) 

The subscript on the curly brackets means that all quantities inside are to be 
evaluated at s2. (Both J and <u2>, y ou will remember, depend on the local 
radius-of-curvature of the trajectory.) 

Suppose we now add up the contributions to changes in e2> during one trip 
of the electron around the ring. The resulting change, which we may call A<a2>, 
is obtained by integrating the right-hand-side of Eq. (5.74) once around the ring: 

A <a2) = 1 
cE2 0 

f(&<u2>N}2 h2 (5.75) 

As before, t it will be convenient to represent the integral as the product of the 
length of the orbit 2nR, with the mean value - with respect to s - of the integrand. 

(5.76) 

Although. JZI and <u2) depend on. the-.actual electron trajectory - and so may change 
from one turn to the next - they will differ little from the values on the design 
orbit. Also the differences will, to first order in the displacements from the design 
orbit, average to zero. Since we are going to be interested, anyway, only in effects 
which accumulate over many revolutions, we will make no significant error if we 
take (as we did for the energy oscillations) the average in Eq. (5.76) by evaluating 

Jf <u2> on the design orbit. We shall therefore, interpret the average over s 
in that way. 

The change A <a2> of Eq. (5.76) occurs in the time of one revolution, namely 
27rR/c. So we may write that 

<-$jr>. d<$> _ Qx - (5.77) 

f For the remainder of the development I shall follow the same line of argument used 
in the preceding section and will not repeat all of the details. You should refer to 
that section for any details that are not clear. 
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This is of course, only the contribution from the quantum noise. As in Section 
5.2, we must still add in the average effect of the radiation which contributes a 
damping term 

2<a2> dG2> = 
dt 

rX 
(5.78) 

where 7x is the damping time constant of the radial betatron oscillations. Under 
stationary conditions the total time derivative - the sum of Eqs. (5.77) and (5.78) 
is zero. We get for the stationary expectation value of a2: 

< > a2 = ; T~Q~. (5.79) 

We may now return to Eq. (5.68) to get the expected spread in the betatron 
displacements. Squaring and taking the expectation of x (s 

P 1 
) we may write for 

the rms spread in the radial betatron displacement at sl: 

u$(sl) = (x&)> = $ <a2>Ple (5.80) 

Since the azimuth sl may be anywhere, we may now drop the subscript. Combining 
the last two equations, we may write that 

u~p = ; ~xQxPW~ (5.81) 

The form of the result is similar to that obtained for a;. Both 7x and Q, are 
numbers which are determined from the overall properties of the guide field - 
and do not, therefore, vary with s. The only variation of uxP comes from the 
factor p(s). This then is our result for the horizontal spread of a stored electron 
beam due to quantum induced betatron oscillations. 

To see the physical significance of our result we must recover the complexities 
hidden in 7x and Q,. Taking J<u2> from Eq. (5.41) 

Q,= ; Cuky”, 
<py>s <c3rp), 

( > G2 
(5.82) 

were G(s) is the inverse radius of the orbit, and,%(s) is the function of Eq. (5.71). 
Taking 7x from Eq. (4.53) we get that 

$3 _ $ TxQx’ Cq-4 <G3x>s 
Jx <G2>s ’ 

(5.83) 

where Cq is the quantum coefficient defined in Eq. (5.46). 
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For an isomagnetic guide field (G = l/pa, or zero) the result simplifies to 

(isomag) , (5.84) 

where <&>Mag is the average of L%’ taken only in the magnets. That is, 

<> •~ Mag = ho JrMag $ {712+(P? - ;P’??}ds. (5.85) 

Comparing Eq. (5.84) with Eq. (5.48) we see that for an isomagnetic guide 
field we may write that 

zp(s) = Jc<.>Mag 

P(s) JX 
( isomag) . (5.86) 

For a precise calculation of CT XP 
the integral of Eq. (5.85) must be evaluated. 

We can however, get a simple - but usually quite good - approximation by making 
use of the approximate relations discussed in Section 3.3. Equation (3.21) gives 
as a good approximation to (s): 

T-/(s) E:’ $ u2 l/2 
( i P (s). 

X 

(5.87) 

To the extent that this approximation is valid &’ and l/2 p’q are everywhere equal 
and H(s) is just a constant! Namely, 

(5.88) 

and Eq. (5.86) becomes 

(isomag) . 

Alternatively, Eq. (5.84) can be written as 

C cyR$ 

P(s) z Jxpovx 
( is omag) 

(5.89) 

(5.90) 

The radial betatron spread is proportional to the energy of the stored electrons and 
to the geometric mean of Cq and a length that is a characteristic of the guide field. 
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To get a qualitative feeling for the order of magnitude of the effect, we may 
in Eq. (5.89) repace /3 on the right-hand side by its typical value p, = R/vx and 
replace cy by its approximate equivalent l/v: - see Sections 2.8 and 3.3 - to 
obtain 

(5.91) 

The ratio of o- 

JE /Jx(, 
XP 

to /3, is the same as the ratio of ue to E. except for the factor 
which might typically be % l/3. As noted earlier, 0; /E. is just y times 

the ratio of the Compton wavelength to the magnetic radius. For a typical 1 GeV 
storage ring we might have p, z 6 meters and o-e/E0 NN ,4 x 10m4 (as found earlier); 
then cti z 1.4 millimeters. 

As argued in Section 5.3 for the energy deviations, the likelihood of finding 
any particular betatron displacement will vary as a normal error function. That 

is, the probability of finding a particular electron with a betatron displacement 
-between xP and xp + dxP will be 

wtxP)dxP 7 &xp ew (-$/2uf$) dxp . (5.92) 

If we think of a particular bunch of electrons which contains, say, N electrons, 
then as it passes any particular azimuth s, the number of electrons n(xP) which 
lie in the radial interval dxP at xP is 

n(xp)d”p = N~t”p)~~, 
and so has also a Gaussian distribution. We may think then, of a stored beam as 
a fuzzy object with a half-width (which depends on s) given by the standard deviation 

u@ of its distribution in radius. 
We should not forget, however, that the total radial spread has contributions 

from both the betatron and energy oscillations,since the spread of energies of the 
electrons in a bunch gives rise to an associated radial spread. Recalling that an 

electron with the energy deviation 6 moves on an orbit whose radial displacement 
varies with the azimuthal position g according to xc(s) = q(s) $/Eo, it follows that 
the mean-square radial spread due to the energy spread is --- 

2 
(5.93) 
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Now the periods of the energy oscillations and of the betatron oscillations are 
widely different,and certainly not precisely commensurate. We may, therefore, 
consider that - although they are stimulated by the same stochastic events - they 
will be statis tically independent. We may then add their contribution to the total 
radial spread as the squares and write that 

U2 
X 

(5.94) 

Let’s consider only an isomagnetic guide field. Taking u,@ from Eq. (5.86) 
and using Eq. (5.48) for u-, we may write that 

u;(s) _ xi @+yp) + ?]p) 1 1 (isomag) . 
X E 

(5.95) 

Or if we are willing to use the approximate expressions of (5.87) and (5.88) for 7 
and96 the ratio of the two terms in the curly brackets is just Jx/Je and we may 
write that 

u;w 
2 

=U JX 

XP ( ) 
1-t J (isomag) . 

c 
(5.96) 

The two contributions to the radial spread vary together so their sum is a constant 
fat tor . Recalling that Je is typically’ about twice Jx we have that 

U’x 1.5 u 
X J-- XP 

(5.97) 

The results of the section do not take into account the effects of coupling between 
radial and vertical oscillations. If such coupling exists the results must be modified 
as described in the following section. 

5.6. Beam Height 
In calculating the beam width we assumed that the emission of a quantum did 

not change the direction of motion of the electron. This assumption is not strictly 
correct. Any individual quantum event may give a small transverse impulse to the 
electron. We may think that the quantum event corresponds to the emission of a 
photon of momentum u/c at, say the angle ey with respect to the electron’s momentum. 
It will carry off a transverse component of momentum equal to Byu/c. Conservation 
of momentum requires that there be a corresponding change in the transverse mo- 
mentum xfEo/c of the electron - see Fig. 45. That is there will be a change in x’ 

- 136 - 



A45 

FIG. 45--Change in the direction of an electron due to the 
emission of a photon. 

given by 

u e 6x1 = Eo x’ (5.98) 

where 19~ is the horizontal projection of 0 ?. The synchrotron radiation is emitted 
generally along the direction of motion of the electron, but is spread out in a cone . 
of half-angle l/y. So we may consider that OY is typically of the order of l/y. The 
quantity 71' which appears in Eq. (5.67) is of order-of-magnitude 1, so the neglect 
of the contribution from (5.98) on the radial motion was well justified. 

Consider however, what may be the quantum effects on the vertical betatron 
motion. If the design orbit lies strictly in a plane there are no first-order effects 
from quantum emission on the vertical motion. (That is, the vertical function 
which corresponds to is precisely zero. ) The only remaining effect would be 
from the angular distribution of the radiation. Let’s see what the magnitude of 
effect would be. 

We may take over the results of the preceding section by replacing Eq. (5.67) 

by 
62 = 0; 62’ = $ ez, (5.99) 

0 

where Oz is the projected vertical angle of emission of the photon. Equation (5.73) 
would become - using the subscript z to remind us that we are now dealing with a 
vertical oscillation - 

S<ai> = 4 022 p&s,). (5.100) 
EO 
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Following through the derivations we would find in place of Eq. (5.81) 

u;pw = ; rz Q,P,@)> (5.101) 

with 

Q, = <a<u2+ Pz> s 

2 . 
EO 

(5.102) 

To evaluate Qz we would need to take into account the variation of the frequency 
spectrum of synchrotron radiation with the angle of emission. Since the effect 
we are dealing with is in any case small, an approximate calculation will do. 
Suppose we first make the approximation 

<u2ei > qu2,<eE> . (5.103) 

For the mean-square projected angle, we may take l/2 the mean-square polar 
angle of the radiation 

(5.104) 

Also let’s replace p,(s) by a typical value p,. We then get that 

Q <NCu2>>spn *% 
Z 2 * 

Yo E. 
(5.105) 

Recall that the average of&u2 >is just what we called Q in Section 5.2. We may 
then write that 

2 
O-Z -fz 2 
uE 5 Q, 

z--. 
Jz 22 

YOEO 
(5.106) 

For a flat design orbit Jz NN 1. Considering only the isomagnetic case, we may 
take 8/E: from Eq. (5.48) and get 

(isomag) . (5.107) 

- 138 - 



Roughly speaking, p, is the same order as p. and 

U2 
Z = CqPn * (5.108) 

The vertical oscillations induced by the quantum emission are energy independent 
and less than the radial oscillations by roughly the factor l/y:. They are very 
small indeed. 

The vertical oscillations given by Eq. (5.107) are so small that they will 
always be negligible in comparison with the vertical oscillations produced by an- 
other much larger effect - a coupling of oscillation energy from the horizontal 
betatron oscillations into the vertical ones. We did not analyze such effects when 
we were considering, in Part II, the nature of the betatron oscillations because 
they would be essentially perturbations of second order. An analysis of the per- 
turbations expected from the construction imperfections in a real ring shows that 
the coupling between horizontal and vertical oscillations is likely to produce a beam 
height in the ring which is at least a few percent of the beam width - and is there- 
fore much larger than the minimum intrinsic width calculated above. 

-Indeed,it is - as we shall see later - sometimes desirable to obtain a beam 
height larger than is produced by accidental imperfections. And this can be done 
by introducing an intentional augmentation of the coupling between the horizontal 
and vertical oscillations - as can be effected by special magnetic elements (skew 
quadrupoles) or by operating the ring near a resonance between vx and vz, or by 
a combination of the two. 

A detailed analysis of the coupling of vertical and horizontal oscillations is 
beyond the scope of this report, but a phenomenological approach will serve our 
purposes. Suppose we let gx and gz represent the invariant mean-square amplitudes 
of the radial and vertical oscillations. That is, 

u;w u;(s) 
gx= p,(s) ; gz= p,(s)’ (5.109) 

For the special case in which the damping rates of the vertical and horizontal OS- ---- --- 
cillations are equal, we may now argue as follows. In the absence of coupling 

gx= go= ;T~Q, (5.110) 
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- from Eq. (5.81). When coupling is taken into account, the quantum excitation 
of the radial oscillations can be shared with the vertical oscillations in any pro- 
portion up to an equal division. That is, we may have that 

gz = Kgx, (5.111) 

where K is the “coefficient of coupling. 11 In principle K may be any number between 
0 and 1, although it is probably difficult in practice to reduce K below one percent 
or so. Since the excitation is being shared, the combined excitations must still 
be equal to go. 

gx + gz = 80’ (5.112) 

We may equivalently write that 

1 
gx= 1SK go l 

(5.113) 

The excitation go is to be taken from any of the expressions for u2 xP/p derived 
(without taking coupling into account) in Section 5.6. Given any coupling coefficient 
K, gz and gx are obtained; and from them the beam half-width and half-height ux 
and uz can be found using Eq. (5.109). 

The maximum beam height that can be obtained in this way will occur when 
K = 1. Then (gz)max = go/X, and 

(a22) max 
PZ 

= ; rxQx. (5.114) 

Using the approximate results of the preceding section for an isomagnetic guide 
field we may write for the maximum vertical beam spread 

C aRr2 
w 0 

PZ 2povx 
(isomag) (5.115) 

where,since we have assumed that rx = 7z, I have set Jx = J, = 1. 
In principle, either or both of the width and height of a beam can be increased 

by the artificial stimulation of the transverse oscillations - for example, by the 
periodic application of impulsive electric or magnetic forces to the stored beam. 
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In practice, however, such external stimulation will give rise also to coherent 
motions of large numbers of the electrons in a bunch which has been found to have 
deleterious effects on the luminosity of colliding beams. It is likely however, 
that artificial beam enlargement can be used in future rings which will have the 
possibility of operating with different betatron numbers for the two colliding beams. 

5.7. Beam Lifetime from Radial Oscillations 
In the preceding section I have argued that the likelihood that a stored electron 

will pass a given azimuth s with a radial displacement between x and x + dx is 
distributed as a Gaussian error function - namely as 

w(x)dx = /! 
2RUx 

exp (-x2 /22)dx, (5.116) 

with ux a function of s. Such a distribution can clearly not be completely correct 
since it has “tails” which extend to arbitrarily large positive and negative dis- 
placements while an actual stored beam must live in a vacuum chamber with a 
finite aperture ! The probability distribution of Eq. (5.116) can be only an approxi- 
mation which we may expect to be reasonably correct so long as the radial aperture 
is much larger than ux everywhere around the ring. 

Even when the aperture is large however, there may still be a significant 
effect from its finite extent. Sooner or later an electron will suffer a sufficiently 
large fluctuation in its emission of quanta to produce a radial displacement as 
large as the aperture limit. Then the electron will be lost by a collision with the 
edge of the vacuum chamber - or whatever obstruction defines the limit of the 
aperture. Alternatively if we take into account the nonlinearities of the guide 
field, large amplitude oscillations may become unstable leading to the loss of the 
electron from the stored beam. It will be convenient for the present discussion 
to think in terms of an aperture that is limited by a physical obstruction. An 
extension of the discussion to a magnetic aperture limit is relatively straight- 
forward. 

So long as the chance of an electron being lost at the aperture limit is small - 
by which we should mean that it is much less than 1 in a damping time - the proba- 
bility per unit time of getting lost is the same for all electrons. Then the loss 
rate from a stored beam will be proportional to the number N of electrons present; 
and N will therefore, decrease exponentially and with a time constant r related 4 
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to the loss rate by 

1 1dN - =- -m 
% N dt (5.117) 

The number 7q is usually referred to as the quantum lifetime of the stored beam. 
A precise evaluation of the quantum lifetime for all conditions is a bit intri- 

cate. I shall therefore, show a way to compute it which is reasonably accurate 
only when the lifetime is long - which is, after all, the condition of most interest 
for a storage ring. I shall first look at the lifetime due to lateral oscillations 
and then look later at the lifetime due to energy oscillations. 

Let’s think now of a somewhat over-simplified situation in which we imagine 
that only the radial betatron oscillations are excited - ignoring for the moment 
the radial spread associated with the energy oscillations. We saw in Section 2.6 
that in the absence of radiation effects the betatron oscillations of an electron 
sweep out a band between the envelope limits X(s) = a&(s) - recall Fig. 12. 
When we include quantum effects and radiation damping, the “invariant” ampli- 
tude factor 2 of any particular electron wanders up and down in a random way. 
The time scale of the variations of a is however, rather slow - that is, much 
larger than the revolution time”- so we may think that the electron continuously 
sweeps out a radial band whose envelope is slowly varying. 

Suppose now that there is at some azimuth, say sI, an obstruction which 
defines an aperture limit of the ring. By that I mean that as the invariant ampli- 
tude a is varied, the envelope X(s) will first encounter an obstruction at sI. See - 
Fig. 46. All losses will occur at SI and we need only consider the radial distri- 
bution at this azimuth. 

FIG. 46--Radial aperture limit. 
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We have seen in Section 2.7 that the radial displacement on successive 
passages of any chosen azimuth varies with time as 

x= a&cosWt (5.118) 

As we did in Section 5.3 for the energy oscillations we may take the square of the 
amplitude factor as a measure of the “effective energy” of the oscillations. Let’s 
define 

W = a2pl. (5.119) 

Quantum effects and radiation damping produce slowly varying fluctuations in W. 
The same arguments made in Section 5.3 can be used again to show that - in the 
absence of any aperture limit - the electrons in a beam will have a distribution 
of W’s according to (see Eq. (5.62)) 

h(W) = -$+ exp t-w/<W>h (5.120) 

where the mean value <W> is equal to 22. (The function h(W) is defined such 
that the number of electrons with “oscillation energy” between W and W = dW is 
h(W)dW.) The function h(W) is shown by the solid curve in Fig. 47. 

h(W) 

f 

FIG. 47--Distribution of oscillation energies. 

Now consider what happens when there is an aperture limit that removes any 
electron for which W exceeds some limiting value W - whichwe may call.~~W-peakf’. 
There can be no electrons with W > W, so the actual distribution h(W) must change 
for large W to correspond to something like the broken line curve in Fig. 47. We 
may think about what is happening in the following way. The quantum effects are 
continually trying to fill in the ideal distribution by a fldiffusion” of electrons from 
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the region of small W into the region of large W. But each time an electron 
reaches W it is “wiped off”, so there is a continuous loss out of the tail of the 
distribution. I would like now to make an estimate of this loss rate. 

We may make a rough estimate in the following way. We have said that there 
is a characteristic “relaxation time” for the quantum fluctuations equal to the 
damping time constant rx. We may guess that there is an “attempt1 to fill in the 
tail of the ideal distribution once each damping time. Then the number of electrons 
lost in each damping time will be equal to the number of electrons in the ideal 
distribution with W > 6. That number is 

N(>&) =smh(W)dW= N exp(-W/<W>). (5.121) 
I$ 

The electron loss rate will then be estimated by 

dN --at- x M $ exp(-+/<W>), (5.122) 

which would give a quantum lifetime of 

7q M, 7x =i&W). (5.123) 

We would estimate that the lifetime itself depends exponentially on &/ < W) . 
An exact calculation of 7q requires setting up a diffusion equation for h(W) 

and solving it numerically with the appropriate boundary conditions. I shall not 
attempt to do this but rather show how a good approximation to the exact result 
can be obtained. 

Consider what would be happening in the neighborhood of some particular W. 
that is much greater than <W> if there were no aperture limit. The chance of -p-v 
finding any particular electron with W > W. in the ideal distribution is very small. 
We may expect that if an electron once gets into the tail (W > Wo) it is most likely 
to return rather quickly to the main body of the distribution - being replaced in 
the tail by some other unfortunate electron. Consider now the flux of electrons 
passing through a small zonef near Wo. The electrons which have been populating 
the tail will be passing to the left through this zone and an equal flux of electrons 

f We should think of passage through a “zone” so that we may ignore the microscopic 
fluctuations in the amplitude. 
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will (in the stationary state) be passing toward the right throught the zone due to 
abnormal quantum fluctuations. (We are neglecting the unlikely events in which 
an electron leaving the tail would have at that instant an abnormal fluctuation and 
reenter the tail of the distribution right away. ) 

Let’s estimate the flux of electrons coming out of the tail. When W is large 
the %ormal” energy fluctuations can be neglected in comparison with the rate of 
decrease of W due to the damping. For any electron the damping gives 

and the flux of electrons through W. due to the damping will be 

dW 
Nh(vE- w. = > 

2% y)h(W()) 
TX 

(5.124) 

(5.125) 

In the absence of an aperture limit the net flux through any W - and past W. 
in particular - must be zero so there would ‘also be an outward flux of electrons 
quite equal to the inward flux of (5.125). 

Now put in the aperture limit at W. If it is sufficiently large, the main body 
of the distribution is little affected. The flux outward through W will be unchanged 
while the return flux will of course, be zero. We have that the flux of (5.124), 
evaluated at W. = W, is also an estimate of the outward flux of lost electrons. The 
loss rate will be 

dN 
-dt= 

2N &h(W) 
TX 

Using Eq. (5.120) for h(W) we obtain, 
7 

X 
@ ew (It/ <W>). rq=2 W 

(5.126) 

(5.127) 

Remember that W and <W> are related to the limiting radial excursion permitted 
by the aperture (assumed to occur at some azimuth sl) and the rms radial displace- 
ment at that azimuth by 

G = [a2p,(S1)]Mui cw> = w39, (5.128) 

with both numbers evaluated at the azimuthal position of the limiting aperture. 
This result differs from the estimate in Eq. (5.123) by the factor <W> /2W 

and gives, therefore, a lifetime smaller by a factor which might be typically 5 or 
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10. The discrepancy can be explained by arguing that the “relaxation time” is 
shorter by this factor for the population of the tail of the distribution than for the 
main body of it - which is understandable since a large fluctuation has a better 
chance of dominating the radiation damping if it accumulates during a relatively 
short time span. Although Eq. (5.127) was derived by making some approximations 
whose quantitative significance we have not tried to estimate, the same result has 
been obtained by more sophisticated - although still approximate - techniques. 5,15 

In our derivation of the quantum lifetime we have assumed that the radial 
fluctuations were due solely to betatron oscillations. As we have seen in Section 
5.5 however, the radial beam spread has contributions from both the betatron and 
energy oscillations. And the analysis is complicated by the fact that the two com- 
ponents have different damping time constants. I shall not attempt to refine the 
calculation but settle for the following comments. The two damping time constants 
are not very different - usually within a factor of two of each other. It is then 
clear that Eq. (5.125) will give a reasonable approximation if we use for u2 x the 
total mean-square beam spread and for 7x some value between the betatron and 
synchrotron damping time constants. Or alternatively we may get a “safe” esti- 
mate of 7q - that is a lower limit.- by using for rx the smaller of the two time 
constants. 

The quantum lifetime increases approximately exponentially with the square of 
the limiting radial excursion - an exceedingly rapid variation. There is then, a 
rather precise criterion for the aperture required. If the aperture is just a little 
bit too small the lifetime will be disastrously short, but if it is a little larger than 
necessary the lifetime will be astronomically large and will be of no consequence. t 

The “critical” aperture limit occurs at about 

lXmaxi = 6o 

PX 
X 

which gives W/<W> M 18 and from Eq. (5.120), 
7 
X e18 

‘q = 36 M 1.5x106rx. 

(5.129) 

t Since other loss mechanisms will then dominate. 
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Since 7x is typically about 0.1 set, the critical aperture gives a quantum lifetime 
of about one day. Other effects such as gass scattering usually give lifetimes of 
several hours and the filling time (time to store an operating beam) is generally 
a fraction of an hour, so a quantum lifetime of one day is quite “safe. v We can 
understand the “rule-of-thumb” that the full aperture must be at least 12 times 
the standard deviation ox of the radial distribution. A similar rule clearly holds 
for the vertical aperture. 

5.8. Beam Lifetime from Energy Oscillations 
In the preceding section we have examined the loss of electrons due to abnormal 

fluctuations in the amplitudes of the radial oscillations. Loss of electrons from a 
stored beam will also occur when abnormal fluctuations in the energy oscillations 
result in energy excursions so large that they can no longer be contained within the 
energy aperture that is determined by the radio frequency accelerating system. 

In Section 3.6 we saw that the energy oscillations correspond to the motion of 
an ideal particle in a potential wellone of whose walls is a potential ffhillff of limited 
height. The situation was described by Fig. 36(b), a part of which is redrawn in 
Fig. 48(a). The horizontal coordinate is the time displacement& associated with 
the energy oscillations and the vertical coordinate is a fictitious “potential energy” 

H 

f(H) 

(b) 

Lmax L I.ll.‘l 

FIG. 48--Quantum spread in the energy oscillations. 
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of the oscillation. The corresponding “kinetic energy” is 

;(& q+-y (5.131) 

where f is the instantaneous energy deviation of the real energy oscillation. 
Suppose we let H represent the “total oscillation energy” - that is, the sum 

of the “potential energy” and the “kinetic energy” of Eq. (5.131) - 

H=@(L)+$ (5.132) 

(Q is taken to be zero at the bottom of the potential well. ) During the oscillation 
of any particular electron the “potential energy” reached at the maximum of g is 
equal to H. And the peak ‘kinetic energy” - which occurs as the electron passes 
x=0- is also equal to H, so 

2 2 
Hz + 5 (5.133) 

EO 
-where 9 is the peak value of &during its oscillation. An electron is captured in a 
stable energy oscillation if H is less than Qmax, the maximum height of the po- 
tential .well. (See Section 3.6...) Otherwise it will be lost. 

In Sections 5.2 and 5.3 we have examined the quantum-induced energy oscil- 
lations under the assumption that they were ideally linear - which would corres- 
pond to the ideal parabolic potential-well indicated by the broken line in Fig. 48(a). 
Under these assumptions, the distribution of time displacements in a stored bunch 
of electrons would be as the Gaussian function drawn in Fig. 48(b) - whose standard 
deviation a7 was evaluated in Section 5.4. 

We have also seen that the energy fluctuations yield an exponential distribution 
in the square of the amplitude of the energy oscillations - as described by Eq. 
(5.62). The quantity W used there is just the square of the amplitude (of the oscil- 
lation in:) and is therefore, proportional to the “total energy” H. In fact, 

cY2 w H=- . 
2E”o 

(5.134) 

It follows that the distribution over H for the electrons stored in a bunch is also 
exponential. Specifically, if we let f(H)dH represent the number of electrons with 
“total oscillation energies t1 between H and H + dH, then a direct translation of 
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Eq. (5.62) gives 

where 

f(H)dH = $- 
<> 

emW/<H))f 

<> H = 

(5.135) 

(5.136) 

This distribution in oscillation energies is shown in Fig. 48(c). 
The real situation must evidently be different. Any electron whose time dis- 

placement once exceeds zmax, the value of: at the top of the actual potential 
hill - ‘or equivalently, one whose ‘*oscillation energy” H exceeds Q,, - will 
be lost from the stored bunch. As we saw in the preceding section for the radial 
oscillations, we must expect that the actual distributions will fall to zero atzmax - 
and therefore at H = k = (Pm,. And there will be a continuous loss of electrons 
due to diffusion out of the tail of the distribution. 

The situation here is similar to the one discussed in the preceding section, 
which would correspond to a parabolic potential well which is suddenly truncated 

at ,7max* The smooth rounding of the potential maximum will have a somewhat 
different effedt on the comportment of the distribution of electrons near the edge 
of the distribution. One may expect however, that so long as zmax >> 07, the 
rate of loss of electrons may be estimated in the same way for both situations. 

Without repeating the argument here we may write the result which corresponds 
to Eq. (5.127), translated to the case of the energy oscillations, 

with 

[= <;>= ;;I - - 

(5.137) 

(5.138) 

The height ama of the potential maximum can be evaluated by performing the 
integration of Eq. (3.53) - or for a sinusoidal rf voltage, from Eq. (3.58). 

The potential cbmax was introduced in order to obtain the magnitude of the 
“aperture” of the energy oscillations. It is related to the maximum acceptable 
energy deviation E hmax - see Eq. (5.57) - 

(5.139) 
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So & has the conceptually simple form 

(5.140) 

The potential Qmax and, therefore, the number 5 depends on the magnitude 
of the rf voltage which must always be sufficiently large to give a quantum lifetime 
greater than the desired storage time of the beam. Typically 5 must be at least 
as large as 18 or so, requiring that krnm/o-e) be about 6. 

For the particular (but very common) case of a storage ring with an isomagnetic 
a sinusoidally varying rf voltage, the parameter 4 can be expressed 

rather simply in terms of the ring parameters. Bringing together the results ob 
tained in earlier sections for dmax and o-e you can show that 

JEEO t= - 
crkEl F(q) (isomag) . (5.141) 

where El is a constant with the dimensions of an energy: 

El= ?& ?%I$-*’ 7 -1.08 X lo8 eV, 
e e 

(5.142) 

and F(q) ‘is the energy aperture function which was defined in Eq. (3.60) and is 
shown in Fig. 38. The parameter q is the rf overvoltage - namely the ratio of 
the peak rf voltage to the energy lost in one turn. For large overvoltages F(q) is 
approximately (2q- ?r) and the quantum lifetime increases exponentially with in- 
creasing rf voltage. 

Notice that in a storage ring with a given guide field (that is with a fixed Q, 

JE, rE 3 and Eo) the overvoltage required for any particular quantum lifetime (that 
is for a particular 6) depends on the harmonic number k of the rf system. For 
large harmonic numbers the overvoltage required varied approximately as &. 
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VI. THE LUMINOSITY OF A HIGH ENERGY STORAGE RING 

6.1. Recapitulation 
The usefulness as an instrument for high energy physics of a colliding beam 

storage ring of any particular energy depends on its luminosity at each energy. 
In the first part of this report some general expressions for the luminosity were 
derived. (See Sections 1.5 through 1.8.) They depend explicitly on certain char- 
acteristics of the guide field in which the beams are stored and on the dimensions 
of the colliding beams at the collision point. The succeeding parts of this report 
have been devoted to an analysis of the behavior of the electrons in stored beams. 
We now have all of the information needed for relating the design characteristics 
and operating conditions of storage rings to their expected luminosity. I wish to 
show how all of the pieces can be brought together to understand the performance 
that may be expected of a high enera storage ring. 

In doing so it will be useful to consider not only the general results that can 
be obtained, but also to relate - to the extent possible - the performance of a 
ring to a small number of parameters that may be used to describe the general 
nature of a ring. Such an exercise will serve to illuminate the most significant 
aspects of a ring design and will$herefore, permit some comparisons of apparently 
dissimilar designs. 

Let’s review where we stand. The luminosity has been written - in Eq. (1.17)- 
as 

f N2 
g = r Aint ; (6.1) 

where N is the number of electrons stored in each beam, f is their frequency of 
revolution and Aim is the “effective interaction area. t1 This area was defined - 
in Eq. (1.10) - by 

A int = $ BwGffh& (6.2) 
where B is the number of interacting bunches in each beam and weff and heff are 
the effective projected width and height of the circulating bunches at the interaction 
region. The latter were defined in Eqs. (1.6) and (1.8) in terms of the width w* 
and height h* (actually the double standard deviations) of the Gaussian distributions 
of the transverse density of the beam at the intersection. And in terms of the 
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bunch length B and the half-angle 6 between the trajectories of the two beams. t 
Specifically, if the two beams intersect in a horizontal plane with the half-angle 
fiH between design orbits 

w& = ( 
w*2 + fy l/2 

) H ’ 

h*eff = h* ; (6.3) 

or if they cross in a vertical plane with the half-angle av between the design orbits, 

w&= w* 

h+& = (h*2 + I? 6%) 1’2 6-v 
The beam width and height may be taken as their %atural” values (with or 

without coupling) which were evaluated in Sections 5.5 and 5.6. Or they may be 
increased by “artificial” stimulation to any size permitted by the transverse aper- 
ture. 

The bunch length I! can be found from the results of Section 5.4. It depends, 
among other things, on the nature of the rf accelerating voltage. (And may involve, 
perhaps a mysterious factor for anomalous bunch lengthening.) But remember that 
the 1.3 system must be operated with an rf voltage which will insure an adequate life- 
time of the stored beam - as discussed in Section 5.8. 

The dimensions computed for the beam will be correct only so long as the 
intensity of the stored beams is not too large. Otherwise the macroscopic fields 
produced at the intersection of the two beams will disturb the trajectories causing 
an increase of the beam dimensions to grow, and the luminosity to fall. The limit 
on the beam intensity - which depends on the beam dimensions and on the properties 
of the guide field - was described in Section 1.6, and considered in more detail 
in Section 2.12. To simplify the discussion here, I shall continue to assume that 
intensity limit is set by the vertical “tune shift. I1 Then the prescription given 
above may be used to obtain the luminosity so long as the number of stored particles 
in each beam does not exceed the limit set by (see Section 1.6). 

N -S DC= 
2 ApOE 

A (6.6) 
int remc2Pv 

t The bunch length does not vary around a storage ring so we do not need to specify 
where it is to be evaluated. 
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where Av, is a constant (which I shall take to be exactly 0.025), E. is the nominal 
energy of the stored beam,and p, is the value of the betatron function of Section 2.6 
evaluated at the intersection point. This last relation sets a fundamental upper 
bound to the luminosity that can be reached by a storage ring of given design 
characteristics. f 

I would like to round out this report by applying the results that have been 
obtained to an idealized model storage ring. Some of the results will be independent 
of many of the details of the model. Those which do depend on particular assump- 
tions of the model can easily be adapted to alternative configurations. 

6.2. The Model Storage Ring 
As a model storage ring we may take one for which the design orbit is in the 

form of a “racetrack” - consisting of two more-or-less semicircular %ormal” 
sections joined by two %peciall’ long straight segments. See Fig. 49. The normal 

, INTERACTION POINT 

‘NORMAL SECTIONS’ 1.11..* 

FIG. 49--Design orbit of the model storage ring. 

semicircular sections of the guide field are assumed to consist of periodic arrays 
of bending magnetics andfocussing quadrupoles - such as might be typical of a well- 
designed circular storage ring. These normal sections may be described by their 
mean radius Rn (defined as the total length of the normal sections divided by as)?? 

f As pointed out earlier, the intensity limit adopted here leaves out of consideration 
the interesting proposal of the Orsay group for storage rings in which the colliding 
beams are neutralized in the collision region. 

t-t Notice that Rn is not the same as the parameter R sometimes used in earlier 
Sections. 
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by the typical value p, of the betatron function (see Section 2.8). We may take 
that both the radical and vertical oscillations have about the same typical value 
of@ so that Px=: p,-- p,. It will also be convenient to write the ratio Rn/Pn as 
vn, the betatron number of the normal sections - which is equal to the betatron 
number one would have if there were no special long straight sections. 

The analysis will be kept simple by assuming that the guide field is both 
separated function and isomagnetic (see Section 2.2). And the ratio of Rn to the 
bending radius p. will be called X n - which is a number usually fairly near to 3. 

The long special straight sections we assume to have - at least approximately- 
the following characteristics. They are ideal %nity insertP (see Section 2.13) 
so that the beam behavior in the normal sections of the ring will be essentially 
the same as if the long straight sections were not present and each of the straight 
sections will contribute 27r to the advance of the betatron oscillation phase. The 
center of the straight section is designed to be a beam collision point. At this 
point the vertical betatron function pz takes on the value p, and the horizontal 
betatron function p, takes on the value PH. The variation of p, and /3, in the 
neighborhood of the collision point will be ignored. 

The .complete guide field will have a total length L of its design orbit which is 
27rRn plus the combined length of the two long straight sections. And the nominal 
frequency f of revolution of the electrons (the inverse period) will be c/L. 

The total storage ring configuration is assumed to consist of two such idealized 
guide fields disposed so that two separate stored beams will collide at the centers 
of their respective long straight set tions, but will be otherwise quite independent. 
It will be assumed that the crossing of the two beam orbits occurs in a horizontal 
plane with the crossing angle aH. Further ?jH will be taken always large enough 
that the term MH dominates the term w* in Eq. (6.3). (I ignore any topological 
problem that may be implied by the configuration of the idealized storage ring!) 

For definiteness, I shall assume that the model storage ring is equipped with 
a simple radio frequency system which produces a sinusoidal accelerating voltage 
whose peak value 0. is adjustable and whose frequency of oscillation is k times 
larger than the revolution frequency - where the harmonic number k is, of course, 
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an integer. It will be assumed also that the systems can deliver any power 
required to store the beams us to a maximum P -- o for each of the two stored beams. 

In a high energy ring it should generally true that the losses in the rf cavity sys- 
tems are a small fraction of the total power available. I shall therefore, assume 
that PO is independent of the actual rf voltage used and therefore, of the energy of 
the electrons stored. 

We shall see that the luminosity of the idealized rings can be expressed rather 
simply in terms of the parameters that have been chosen here to describe the 
physical characteristics of the storage ring. For future reference these parameters 
are listed in Table 6.1. 

TABLE 6.1 

PARAMETERS OF THE MODEL STORAGE RING 

‘n 
Typical value of the betatron functions in the 
normal set tions . 

Rn Mean radius in the normal sections. 

V = Rn/Pn Betatron number of the normal sections. n 

pn Bending radius in the magnets. 

‘n Elongation factor of the normal sections. 

L Total orbit length. 

f= c/L Electron revolution frequency. 

pO 
Maximum radio frequency power available for 
each beam. 

@VP, Vertical and horizontal betatron functions at the 
beam crossing point. 

Half-angle between the beam lines at the crossing 
point. 
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6.3. High Energy Luminosity 
The maximum number Nmax of electrons that can be stored in a beam is set 

by the maximum rf power PO available to accelerate each stored beam. Each 
electron in a stored beam radiates energy at the rate given by Eq. (4.9) so Nmax 
is related to PO by 

N max 
= zgy;” poLqpo 

e EO 
(6.7) 

The maximum stored intensity decreases as the fourth power of the energy. 
I shall define the high energy regime of a storage ring as the range of energies 

in which the intensity of the stored beam is limited only by the available power - 
and so is determined by Eq. (6.7) - and in which the effective interaction area ---e 
A int can always be adjusted to the value Ac defined by -m 

(6.8) 
where Dc is the critical transverse density that was defined in Eq. (6.6). This 

high energy regime corresponds to “Case 2” of Section 1.7, so the optimum lum- 
inosity in this regime is given by Eq. (1.22). Retaining the notation g2 for this 
regime we have that 

2Z2 = f DcNmax = RnpO c 
2 $P,E; 

(6.9) 

where L has been replaced by c/f, and p. by R,/A,. The physical constant is 

3 (mc2)2 Au, 
c2= TE r2 e 

(6.10) 

In convenient units, c2 = 6.125 x 10 2g (GeV)3-meterW2 -watt-’ -set-‘. 
Apart from the relatively unfree parameter hn (generally about 3) the optimum 

luminosity at each energy E. in the high energy regime depends only on the geo- 
metric scale of the ring, Rn, on the available rf power PO, and on the betatron 
function pv at the intersection. Notice that in this regime the luminosity decreases 
as the cube of the operatinff energy Eo. -e --- And it is inversely proportional to p,. 

The special long straight section in our model ring is intended to permit the 
introduction of a suitable magnet-free space for observation of the collision region 
and also to provide for the lowest possible value of /3, in that region. The general 
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properties of a low-beta insert were discussed in Section 2.13 although no attempt 
was made there to illuminate the artistic aspects of their design. Let me say 
here only that practical considerations seem to preclude the realization of a beta 
lower than about 5 cm if a free space of about 5 meters is to be provided. (Also, 
if the bunches in the stored beams are as long as 5 cm or so - which is not un- 
typical for some convenient choices of the operating frequency - much smaller 
values of p V would not be useful since P, would then vary by a large factor across 
the beam intersection region, (see Section 2.13). ) 

I should remind you that p, appears (as opposed to ,BH) because I have assumed 
that it is the vertical tune shift that sets the intensity limit. And I should also 
point out that - from the results of Section 2.12 - the intensity limit of Eq. (6.6) 
is strictly correct only if weff is appreciably larger than heff. If weff M heff, our 
relations need some slight modification. And if weff heff, it is likely that the 
horizontal tune shift will be dominant and /3, would then have to be replaced by 

PH in all of the formulas of this section. 
-The most important aspect of the result of Eq. (6.8) is perhaps the fact that 

the optimum luminosity in the high energy region does not depend explicitly on the 
dimensions of the beam at the intersection region, nor on the crossing angle. We 
may then, say that all configurations of hAh energy storage rings are equivalent & 
the high energy regime. If rings of different configurations have comparable 

Rn, PO and P,, (or P,) then their optimum luminosities will all be comparable in 
the high energy regime. ’ And, as we have seen, this luminosity will decrease with 
increasing operating energy as Ei”. 

This behavior of electron storage rings is somewhat unfortunate. Cross 
sections of any particular high energy, electron-positron interaction are likely to 
decrease with energy at least as rapidly as “0”. So the observed rate of interactions 
of a given kind will have a downward dependence on energy that is rapid indeed! 

We must expect that the high energy regime of a storage ring will extend over 
a limited interval of energies - namely only over those energies for which the 
stored current is determined by the available PO power according to Eq. (6.7) and 
for which the beam area can be adjusted to satisfy Eq. (6.8). If we express Eq. (6.8) 
in terms of the storage ring parameters - by using Eq. (6.7) for N,, and Eq. (6.6) 
for DC - we get that Ac is given by 

(6.11) 
2 3 POLPOPV 

A=$* 
C 

0 
5 

EO 
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For any particular storage ring (with a given PO, L, po, and ,6,) the beam area 
must vary as the power of the energy if the optimum luminosity is to be 
obtained at each energy. The boundaries of the high energy regime are reached 
when it is no longer possible to satisfy Eq. (6.11). 

For a given storage ring the upper boundary of the regime will be reached 
when the minimum achievable beam area is larger than the critical area of Eq. (6.11). 
(This circumstance may or may not occur before the maximum energy capability 
of the guide field is reached. ) For any given ring the minimum effective inter- 
action area that can be obtained will generally depend on the beam energy. Let’s 
call this area A min(EO). Then the upper boundary of the high energy regime will 
occur at the energy EL (where L stands for 9Wn.itf1) for which the equation 

A mint EL) = Act EL) (6.12) 

is satisfied - and Ac(Eo) is the function defined by Eq. (6.11). 
Above the energy EL we have a new regime which we may call the ultra high 

Let’s write the luminosity in this regime g3. It will be obtained energy regime. 
from Eq. (6.1) with N taken as the Nmax of Eq. (6.7) and Aint taken equal to 
A mint’01 : 2 2 

z = 9 .’ (m,2)4 Lpopo 
3 64?~ ,2 c (6.13) 

e EiAmin(Eo) 

It will generally turn out that A &po) varies as either E. or as Ei so the 
luminosity in the ultrahigh energy regime will decrease with energy as Eig or E -10, o . 
It is clear that a storage ring would probably not be very useful very far into this 
energy range. Indeed, we should expect a well-designed storage ring to have the 
energy EL at or above the highest desired operating energy. 

The lower boundary of the high energy regime will be found at that energy for 
which it is no longer possible to make the interaction area as large as the critical 
area demanded by Eq. (6.11). The maximum achievable interaction area may be 
a fixed number set by the aperture of the guide field and the geometry of the inter- 
action region or may depend on the beam energy. Let’s say that the maximum 
achievable area is some function A max(Eo). The lower boundary of the high energy 
regime will then occur at the energy ET, which we may call the transition enera t 

t‘ Not to be confused with the so-called “transition energy” of proton synchrotrons. 
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for which 
A matET) = Ac(ET) (6.14) 

where Ac(Eo) is the function defined by Eq. (6.11). 
Below the transition energy the luminosity will no longer follow Eq. (6.9) and 

a new regime takes over. It is discussed in the next section. 

6.4. Low-Energy Luminosity 
A storage ring operated at an energy below ET, the transition energy just 

defined may be said to be in its low-energy regime. The energy ET was defined 
as the energy below which it is not possible - for some technical reason - to 
increase the effective interaction area to the size demanded by Eq. (6.8). It follows 
then that in the low-energy region the beam current must be held below what could 
be sustained by the rf power PO available if the beam density limit of Eq. (6.6) is 
not to be exceeded. The optimum luminosity will be obtained in this region if the 
effective interaction area A int of Eq. (2.6) is adjusted to its maximum possible 
value at each energy - that is, to the value A max(Eo) defined in the preceding 
section - and the beam current is adjusted to the value Nc such that 

-NC - DcAmax (6.15) 

This situation corresponds to the Case 1 considered in Section 1.7, and the lum- 
inosity in the regime is the 2I given by Eq. (1.20): 

g =f.D2A 
1 4 c max’ (6.16) 

You should remember that Dc and Amax will generally both be functions of energy. 
The effective interaction area is defined by Eq. (6.2) and Eq. (6.3) or Eq. (6.4) 

in terms of the width, height, and length of a stored bunch of the collision point, 
the number of stored bunches in a beam, and the beam intersection angle. The 
maximum interaction area will be obtained when all these quantities are made as 
large as possible. Let’s now look on what determines the limits on them. 

First, it is clear that the introduction of a crossing angle will always increase 
the effective interaction area. The crossing angle may be fixed at some “large” 
angle - as in the recent SLAC design - or may be adjustable - as in the Frascati 
and DESY designs. In any case, there will probably be some upper limit set by 
the geometry of the ring design. If the angle is adjustable, the transition between 
the high-energy and low-energy regimes will presumably occur when the angle is 
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at its maximum. We may therefore take the crossing angle as fixed at its maxi- 
mum value in the low-energy regime. The maximum angle is probably limited to 
some number not greater than 0.1 for various reasons. So long as it is no greater 
than that, the approximations I have made (which assume that the angle is much 
less than 1) are still valid. 

I shall also assume - to simplify the formulas- that the crossing angle is 
‘large” in the sense that the term Q?jlI dominates w* in Eq. (6.4). (Remember 
that I have adopted a horizontal crossing angle for my model ring. ) Then the 
effective interaction area of Eq. (6.2) becomes 

A int =f BQ%h* (6.17) 

And this is the quantity we want to be as large as possible. 
Next, it is clear that we want B, the number of bunches, to be large. Since 

the rf voltage is periodic with the harmonic number k, the maximum number of 
bunches that can be stored is also k; with all bunches filled, B = k. It would at 
first sight appear that k should be as large as possible. That would be true if the 
crossing angle aH were zero. But with a large crossing angle it is the product BQ 
which appears and we must expect that Q will decrease with increasing k. It can 
indeed be shown that the maximum achievable value of BQ is nearly independent of 
k so long as k is not too small. Since the demonstration of that fact is a bit long, 
I defer it to the next section and just take here the result obtained there. To a 
good approximation, it is found that for k not too small, the maximum bunch length 
is just 1/3~ of the minimum spacing between bunches, namely the ratio of the 
orbit length L to the harmonic number k. That is, 

Q L 
max =3nk (6.18) 

We have the simple result that 

(BQ)max = kernax = L/3n (6.19) 

The maximum of BQ in Eq. (6.17) is just a number proportional to the size of the 
storage ring. 

The only remaining factor that appears in the effective interaction area is h*, 
the beam height at the collision point. We have seen in Part V that the minimum 
transverse dimensions of the beam are determined by the intrinsic quantum excita- 
tion of the radial oscillations and by the coupling between the vertical and horizontal 
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oscillations. It should be possible in principle to increase the beam dimensions 
above this minimum size by exciting the betatron oscillations with specially applied 
external electromagnetic forces. This has in fact, been done in existing storage 
rings. But it is also found that such artificial beam enlargement does not lead to 
any increase in the maximum luminosity. 

It can be shown that the techniques used for beam enlargement produce also 
some coherent transverse oscillations. And these coherent oscillations probably 
lead to a decrease in the current density that can be tolerated when two beams are 
brought into collision. It should be observed however, that in all existing rings 
the two beams are stored in the same guide field and have, therefore, identical 
betatron frequencies. We may expect that the coupling between the two beams 
would be greatly reduced if the beams had different betatron frequencies - as 
could be arranged in future rings. It may then, be possible to get an increased 
luminosity in future storage rings by the artificial enlargement of the transverse 
dimensions. Since this possibility has however, not yet been studied in detail, I 
shall make the more pessimistic assumption that the current density limit of ’ 
Eq. (6.6) must be applied only to beams in which the betatron oscillations in a 
beam are the completely incoherent +‘naturalfl oscillations produced by quantum 
fluctuations. 

We must then ask what is the maximum beam height that can be obtained 
using only the natural quantum-induced oscillations. This question has been con- 
sidered in Section 5.6. Remembering that h = 2oz, we get from Eq. (5.115) that 

h*2 = 55 flC “RnPv E; 
max 64 0 (mc2)3 POVn 

(6.20) 

For our present purposes we may use the approximation that CL! = l/v2 = l/vi - 
X 

see Eq. (3.22). Also writing An for Rn/pO, we have that o 

v3 n 

The maximum possible beam height varies directly with the beam energy Eo. (We 
are of course assuming that the aperture throughout the ring is always large enough 
to accommodate the beam width and height with the maximum coupling that we have 
postulated. ) 
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We now have all of the information required for computing the maximum 
value of the interaction area of Eq. (6.17). Namely, 

A max = i (BQ) max ‘H hmax ’ (6.22) 

where ( BQ)max is given in Eq. (6.19) and h*max, in Eq. (6.21). Putting the pieces 
together, 

A 
yJP ;‘” ~3~ E. 

max = “A .3/2: s (6.23) 

where 

With this expression for Amax (and remembering that L = c/f) the low energy 
luminosity of Eq. (6.16) becomes 

(6.25) 

with 
C&l2 

0 Cl = 55 K 1’2 
48 rt(mc2)3 3 mc2 ’ 

(6.26) 

In convenient units, cI = 1.29 X 10 37 (GeV)-3 -meter-1’2 -set-‘. 
We find that the optimum luminosity in the low-energy regime varies with the 

cube of the operating energy. In addition, it varies linearly with the crossing --- 
angle 6H and inversely as the 3/2 power of the betatron function at the beam inter- 
section. 

The low-energy regime in which the luminosity follows Eq. (6.25) extends 
from the energy ET downward. (Above the energy ET there is no longer enough 
current to match the interaction area. ) The lower energy bound of this regime is 
less well determined. It will, most likely, occur when - for some reason or 
other - it is necessary to limit the stored current below the critical value defined 
by Eq. (6.15). The current limit may be set by the onset of some beam instability 
not considered here. Or in the most favorable circumstance the current will be 
limited at low energies only due to the loss of beam from the Touschek effect - 
see Section 1.3. 
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6.5. Maximum Bunch Length 
We saw in the preceding section that the low-energy luminosity will, usually, 

be proportional to the bunch length I. It is therefore, desirable that I be as large 
as possible in the low-energy regime. The length of a stored bunch was discussed 
in Section 5.4; we saw there that it is 2c 0 7, where a; is the time spread. Using 
Eq. (5.66) for 9; 

4c2 c 3 
&-A. CrL- EO 

(mc’)’ J,P~ eSr0 (6.27) 

The bunch length is related to the various ring parameters, (Y, L, Je , p. - 
which we may take as fixed for a given ring - to the operating energy E. and to the 
slope co of the rf voltage - which is adjustable. I am assuming here that the rf 
voltage is sinusoidal. It is usually so for practical reasons. If the voltage is not 
sinusoidal the conclusions will be modified somewhat, although the qualitative 
features of the result will probably not be changed. 

For a sinusoidal rf voltage 0, will vary with the peak rf voltage 3 and the 
bunch.length will be longest when 9 is as small as possible. But as we saw in 
Section 5.8,. the rf voltage determines also the beam lifetime due to energy fluctu- 
ations. We may say that the maximum bunch length is obtained when the rf voltage 
is set as low as possible compatible with an acceptable beam lifetime. 

The voltage slope q. has been written in terms of $ in Eq. (3.39). It will be 
convenient to use, instead of $, the “overvoltage” q = $/U, that was found to be 
a useful parameter in Section 3.6. In terms of q, Eq. (3.39) becomes 

eo= WrfUO (q2-1) l/2 - (6.28) 

Now let’s replace urf by its equivalent 2Tck/L where L is the orbit length and k is 
the harmonic number of the system, and replace U. by the expression in Eq. (4.8). 
Then we have that 

. kE;: 2 
v. = --ccy poL (q - 1) l/2 (6.29) 

If we use this expression in Eq. (6.29) and express Cq and Cy in terms of the constant 
El defined by Eq. (5.140), we get for the bunch length the equation 

c2El 
f2= - 

7r2 
(6.30) 
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Now notice that the combination JcEO/czE1 is also contained in the parameter 
5 that appeared in our analysis of the quantum lifetime. See Eq. (5.141). So the 
bunch length can be expressed in terms of 4 and the overvoltage q. Using Eq. (5.141) n 

(6.31) 

where F(q) is the energy aperture function of Eq. (3.61). The total q-dependence 
of this expression for 5 is 

*= 2-* (6.32) 

For high energy rings q will generally be as high as 3 or more to get the desired 
quantum lifetime - provided only that the harmonic number is reasonably large, 
say greater than 20. For any q significantly greater than 1, the second term on 
the right-hand side is well approximated by 2/q (q+ 1) l/2 , which will then also 
be quite a bit smaller than 1. We will not make a significant error if we ignore 
this term and write for Eq. (6.31), 

(6.33) 

We have then, an expression for L which depends only on L, k, and the lifetime 
parameter [. 

We saw in Section 5.8 that the beam lifetime is an exceedingly rapid function 
of the rf voltage. The bunch length will therefore, not be very sensitive to the 
precise definition of an “acceptable” lifetime. I may, therefore, take the simple 
criterion that the quantum lifetime 7q (from energy oscillations) shall be some 
large fixed multiple of the energy damping time constant 7E . Since TV is typically 
0.01 to 0.1 set, we would probably be willing to accept a beam lifetime about lo6 
times larger. 

In Eq. (5.135) the ratio of 7 
q 

to 7-C was expressed in terms of the parameter 5: 

(6.34) 

Let’s call 5, the value of 5 that gives 7q/~e = 106; then solving the transcendental 
equation for to, we find that to = 18. 
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If we use this value for 5 in Eq. (6.33) we obtain the maximum bunch length 

P L 
max - %ii* (6.35) 

which is the expression that was adopted in the preceding section. We have the 
interesting result that, when the bunch length is a maximum, the total circum- 
ference occupied by the bunches, kernax, is always a constant fraction - namely 
about 1/3r or 10% - of the ring circumference. 

6.6. Optimum Luminosity Function 
I have chosen to compute the optimum luminosity of any particular storage ring 

at the operating energy E. (assumed to be adjustable) in terms of six parameters 
(assumed to be fixed numbers) that describe the design characteristics of the ring. 
These parameters are Rn, vn, An, p,, 6R, and PO - all described in Table 6.1. 
These six parameters can be chosen relatively independently in designing a ring. 
They would become interdependent however, if we were to take into account con- 
siderations external to the physical characteristics of the ring. In particular, any 
economic optimization would give relations among them all. For example, 
increasing Rn would mean greater costs for certain components which might, how- 
ever, be compensated for by decreasing PO with a net overall increase in the high 
energy luminosity. It is, however, difficult to make a generally valid cost analysis 
and I shall not attempt to do so here. Rather, I shall only make some comments 
about the significance of some of the parametric dependences in the luminosity 
relations. 

The maximum achievable luminosity in the low-energy regime is given by 
Eq. (6.25) and in the high-energy regime by Eq. (6.9). We have that 

All28 E3 
q=cl n H302 

(v,P,) ’ 
(low energy) ; 

‘OR, 
g2=c2 p2 

n @VE3, 
(high energy) . 

Thecomplete optimum luminosity function has the form shown in Fig. 50. 
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FIG. 50--The optimum luminosity function. 

The transition between the two energy regimes occurs at the energy ET which 
is evidently, the energy at which the two functions 2Zl and LF2 are equal. Solving 
for this energy, we find that 

(6.36) 

with 

or 
CT = 6.18 x 1O-2 GeV -meter1’4 -watt-1’6. 

You will notice that the transition energy varies exceedingly slowly with all of the 
significant parameters of the ring. 

Below the transition energy ET the luminosity goes as E3. (One power comes 
from the beam height, a second from the corresponding increase of current per- 
mitted for a fixed current density limit and a third from the linear increase of the 
limiting current density with energy. ) A.bove ET the energy dependence is as 1/E3. 
(The current varies as 1/E4, but one power of E is compensated by the permitted 
linear decrease of the area with energy. ) 

In the low energy region the luminosity is proportional to the crossing angle 
aH and independent of the ring radius Rn and of the available rf power PO - 
although ET, which sets the upper edge of the low energy region does depend on 
the rf power. At high energies, on the other hand the luminosity is proportional 
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to PO and to Rn, but independent of aH. This lack of dependence comes about 
because the beam dimensions are always adjusted to reach the limiting current 
density. The choice of 6H is not coupled to the choice of other parameters (but 
will most likely be dictated by geometrical constraints imposed by the intersection 
region layout). The rf power PO costs money - both for itself and for associated 
costs of the vacuum system which must absorb the power. There are also costs 
associated with Rn - and perhaps roughly in proportion or stronger. (For a given 

An’ vn, and energy, the magnet aperture must increase with Rn although the mag- 
netic field decreases; cabling and vacuum systems increase with Rn; and real 
estate costs go as Rf. ) 

A dependence on vn appears only in the low energy region - when the lumin- 
-3/2 osity goes as vn . This is a good place to point out a possible criticism of the 

analysis for the low energy region. In obtaining the maximum possible beam area, 
I assumed that vn was kept a constant. One might argue that vn should be 9uned” 
to get a further increase in beam size - that is, that v, should be lowered until 
some other limit was reached. In principle, one could - by decreasing vn - 
always increase the natural beam size until beam was lost to the aperture limits. 
Such a method. of operation would lead to a different energy dependence at low 
energies. 

There are however, other constraints on v,. There are relatively few good 
operating points in the resonance diagram. So the ‘choices of vn are a discrete set, 
and it did not appear appropriate to treat it as a continuously adjustable parameter. 
Perhaps more importantly, for a given geometry of the components it would gen- 
erally not be possible to vary vn and maintain the appropriate matching conditions 
with the long straight sections. One would then expect that any change in vn would 
lead to some related variation of ,B,. (This point is considered further below. ) 
All in all, the analysis made here does not seem too inappropriate although one 
may wish in practice to consider the possibility of employing some alternate choices 
of vn for low energy operation. 

Assuming a constant value of v, the primary consideration affecting the choice 
of its design value is an economic one. The aperture requirements of all magnets 
are related to v,. With the assumptions made here, vn places a requirement on 
the useful horizontal aperture at the maximum design energy and also one on the 
vertical aperture which must accommodate the beam when it takes on its maximum 
height - which will occur near ET. 
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There is at all energies a relatively weak dependence on the elongation factor 
hn, for which there is anyway, generally little freedom of choice. Notice, also 
that the harmonic number does not appear explicitly in the optimum luminosity 
functions. 

At both low and high energies the luminosity has a relatively strong inverse 
dependence on J-3,. It wouldseem that ,6, should always be made as small as pos- 
sible. The lowest practical value may be set by various factors: the variation of 
p, across the interaction zone; aberration in the lenses; practical limitations of 
quadrupole strengths and apertures; requirement for a long magnet-free space at 
the interaction, to name a few. In recent designs it has seemed feasible to make 

pV as small as about 0.05 meters, or about 10 -2 
of P,* But the quantitative nature 

of possible inherent constraints on p, and their relation to other parameters is not 
clear to me at the present moment. 

If we evaluate either .9’I or g2 at the transition energy, we can find the peak 
value LFT of the luminosity function. 

LPT = c 
(%SHP&1’2 

0 Al/2ti3/4 5/4 ’ (6.37) 
n n pV 

with 

- = 2.81 x 1O33 meterD1/li -watt-1’2 -set-‘. 1 
3 

cT 

The optimum luminsoity in the two energy regions can be expressed conveniently 
in terms of -gT. Clearly, 

EO 
3 

gl= E ZT’ 
0 T 

Lz2 = . (6.38) 

The upper limit EL of the high energy regime is reached when the effective 
interaction area can no longer be reduced to satisfy Eq. (6.8). Recall that the 
current is decreasing as Ei4, and that the critical current density decreases as 
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E--l The interaction area must, above ET decreaseas E -5 
0 l 0 

. In our model ring, 
the only significant control on the beam area is through the product of the bunch 
number B with the height h*. The product Bh* must, therefore be decreased as 
Ei5 through the high-energy regime. We have assumed that the beam height may 
be controlled by varying the coupling between the vertical and radial oscillations. 
Let me assume that with the minimum achievable coupling the beam height is reduced 
by some constant factor p below the height that would occur with maximum coupling. 
Then the minimum height is hh;“nax at each energy. Now recall that hm= is pro- 
portional to the beam energy; so in going from ET to EL, the beam height can be 
reduced by the factor pEL/ET. Finally, the number of bunches B can be reduced 
by filling only some of the available bunch positions. At ET all of the k possible 
bunches are filled. To get the minimum area we should fill only one bunch. This 
gives us a reduction by the factor k. 
and this must equal ( EL/ET)-5. 

The total reduction possible is the pEL/kET, 
We get that 

EL E l/f3 -= 0 ET k 
(6.39) 

Probably /J is about 0.02 or so; clearly a high harmonic number is needed if EL is 
to be significantly higher than ET. 

Some further decrease in effective area can also be obtained decreasing the 
bunch length - which can be done by increasing the rf voltage above that assumed 
in deriving Amax. The length decreases only as the square root of the voltage 
however; and since there is likely to be little excess voltage capability at the 
highest energy, there is not much to be gained by this procedure. 

One further remark. I have assumed all along that the critical current density 
was due to the vertical tune shift. We should now check up on this assumption. 
So long as p, is somewhat less than ,f3,, the beam height at the interaction point 
will always be less than its width. Applying the results of Section 2.12, to the 
crossing geometry of our model storage ring, the ratio of the horizontal tune shift 
to the vertical one is 

Avx ‘H h* 
-=P,ns, Au 

Z 
(6.40) 
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If this ratio is never to exceed 1 we have the condition that 

P 
H,--- p6H 
P, h” 

We have until now not considered p, at all. 
not be too large for our calculations to be valid. 
generally (unless k is extremely large) be much 
on p, will not usually be difficult to satisfy. 

6.7. Luminosity Function for Project SPEAR 

(6.41) 

We see however, that it must 
For our model ring 18, will 

larger than h*, so the condition 

The model storage ring of Section 6.2 corresponds very closely to a design 
proposed recently by the Storage Ring Group? at the Stanford Linear Accelerator 
Center. The design is called SPEAR - for Stanford Positron Electron Asymmetric 
Rings. (The individual rings are asymmetric, because the special straight sections 
are not placed symmetrically in the otherwise circular guide field. ) The essential 
parameters proposed for SPEAR are: 

Rn = 34.3 meters An= 2.7 

.‘n = 3.2 P,= 0.05 meters 

6H = 0.10 PO = 5.5 x lo5 watts 

With these parameters the peak luminosity given by Eq. (6.37) and the transi- 
tion energy evaluated from Eq. (6.36) are 

ET = 1.19 GeV 

9 = 5 1 X 1O33 cmm2 set-l T . 
From these two numbers - and using the equations of (6.38) - the luminosity curve 
of Fig. 51 is obtained. 

In the SPEAR design the rf harmonic number k is 36 so the upper limit of the 
high-energy regime expected from Eq. (6.35) is at about 3.2 GeV - which is above 
the top design energy of the rings at 3 GeV. No estimate has been made of the 
lower bound of the low-energy regime. 

t The design was developed in January 1969 by B. Gittelman, B. Richter, D. Ritson, 
and M. Sands. 
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FIG. 51--Luminosity function for Project SPEAR. 

The stored beam currents required to reach the luminosities shown in Fig. 51 
are rather high. If some effect that has not been taken into account limits the cur- 
rent below what is required to reach the optimum luminosity, the realizable lumi- 
nosity will of course, be decreased. I show by the broken lines in the figure, the 
luminosities that can be reached with any arbitrarily specified current - provided 
only that the interaction area can still be adjusted to get the best luminosity. To 
get the peak luminosity ST, a current of 40 amperes must be stored in each 
beam! It remains to be seen whether such high beam currents can indeed be stored 
in an electron-positron, colliding beam storage ring. 
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SLAC-121 Addendum+ 
M. Sands 
May 1979 

PLUS OR MINUS ‘I’ 
ALGEBRAIC SIGNS IN THE STORAGE RING EQUATIONS OF 

SLAC REPORT NO. 121* 

When I was writing SLAC Report 121, I was making the implicit assumption 
that the curved parts of the design orbit would always bend in the same direction. 
The RLA design shows that such an assumption was short-sighted. I have, there- 
fore, reviewed SLAC-121 to see which equations may need to be changed when the 
design orbit has parts with a reverse curvature. Fortunately, very few changes 
are required. In this note, I report the adjustments that should be made in SLAC- 
121 so that the results will be applicable to rings of arbitrary curvature. In addi- 
tion, I list other miscellaneous corrections - particularly of algebraic signs. 

A. Comments on Part II of SLAC-121 
In describing the design orbit, it was assumed that the direction of rotation 

was clockwise (looking down on the orbit). See Fig. 7. (I now feel that this was a 
poor choice, but that’s life. ) That is, the orbit was assumed to curve toward the 
right, while the positive direction of the horizontal (or radial) coordinate, x, was 
taken to the left. The positive direction of the z-coordinate, of course, defines the 
%pwardYf direction. The equations of SLAC-121 will, as we shall see, generally 
hold with a minimum of tinkering if we maintain the convention that the x-coordinate 
is taken as positive to the left of direction of travel, and if we insist that the net 
curvature of the design orbit shall be toward the right, while permitting that parts 
of the orbit may have opposite curvatures - namely, toward the left. 

With these understandings, Eqs. (2.1) and (2.2) may be left as they are, but 
Eqs. (2.3) and (2.4) need the following comments. It is convenient to define the 
curvature function G(s) so that it is positive when the orbit curves to the right 
(toward negative x), and is negative for the opposite curvature. Equation (2.3) 
will give this result provided that we specify that e shall represent the electric 

sign, of the circulating particle. (That is, e is a negative number 
for electrons. ) For consistency, 2 should be interpreted the same way in Eq. (2.4), 
and, also in all subsequent equations in SLAC-121. 

* 
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Equation (2.5) now defines the “radius of curvature*’ of the orbit ps as an 
algebraic quantity. The radius is positive if the center of curvature is toward 
negative x, and negative of the center of curvature is toward positive x. 

Equation (2.6) has a typographical error; it should read: 

-de, = T = G( s)ds 
S 

(It is intended here and later that angles in the plane of the orbit are measured 
with the usual convention - positive angular changes are counter-clockwise. ) 

With these adjustments all of the remaining equations of Part II need no change 
to take into account orbits that may have reverse bends. It is only necessary to 
keep in mind that e, G(s), p,, and KI(s) are all quantities with appropriate signs, 
and in particular, that G(s) and ps (and, of course, KI(s)) may have both positive 
to negative values around the ring. 

Notice, however, that the definition of an f’isomagneticT’ guide field in Eq. (2.9) 
intends that G(s) shall have a unique value - including the sign - in all bending 
magnets. Our conventions then dictate that Go = l/o0 is necessarily a positive 
number. 

While I am at it, I may as well point out some careless errors of sign in Part 
II that are not basically related to the present discussion. 

Notice that Kx, KZ, and the generic K have been defined to be positive when they 
are defocussing. See Eqs. (2.19), (2.20) and (2.31). * Equation (2.32) is then wrong 
- it assumes the opposite definition. So Eq. (2.32) should read 

K< 0: x = a cos (m s + b) 
K= 0: x=as+b 
K :O: x = a cash (fi s + b) (2.32) 

Similarly, the matrices of Table I are wrong. Letting the conditions on the left of 
Table I stand as is (K < 0, K = 0, K > 0 in that order), the matrix elements need 
correction by replacing K everywhere with its negative. (Change K to -K, and -K 
to K. ) Sorry about that. 

* 
Probably a bad choice. And, clearly, I was quite ambivalent, since I shifted 
ground and wrote some of the equations with the opposite convention. 
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A careless error of sign was also made in writing Eq. (2.84). Clearly, if 
6G is to be interpreted in the normal way as the change in G (with appropriate sign) 
Eq. (2.84) will follow from the immediately previous equation if it reads 

Axt=-6GAs. (2.84) 
The error made here was propagated in all subsequent equations, so all of the - 
equations of Section 2.10 should be corrected by changing 6G to -6G. 

There is a typo in Eq. (2.60). The last integral should be preceeded by the 
fat tor 1/27r. 

B. Comments on Part III of SLAC-121 
All of the numbered equations in this part are, I believe, correct as they stand 

- with G(s) an algebraic quantity with appropriate sign. 
There are a few errors in the text. In the line above Eq. (3.5) the equation 

should read: Kx = -G2. In the material above Eq. (3.6) 6G should be replaced 
wherever it occurs by -8G. 

C. Comments on Part IV of SLAC-121 
The material of this part is OK. In particular, the integral for 9, Eq. (4.18) 

contains G(s) to the first power, so those parts of the orbit with reverse curvatures 
will (for the same sign of KI) give ‘an opposite contribution to the integral. 

There are a few typos. In Eq. (4.13) p should read Ps. In Eq. (4.17) the large 
parenthesis which should preceed l/p is broken. In Eq. (4.26) the long bar after 
the first z1 should be an arrow ( +). In Eq. (4.48) the negative sign after the equal 
sign should be deleted. 

1 D. Comments on Part V of SLAC-121 
This part suffers considerably from the implicit assumption that the design 

orbit had a homogeneous (always positive) curvature. To make it apply generally 
to orbits with some segments of abnormal curvature the following changes are 
required. 

Eqs. (5.3), (5.9): wc is a positive quantity, so in these equations p should 
be replaced by its absolute value ) p]. Eq. (5.20) : Replace p3 by lp31. 

It follows that the quantum excitation depends only on the magnitude of the 
orbit curvature. So the following changes should be made in the rest of Part V. 
Eqs. (5.40), (5.41): Replace y:G by ‘yi[Gi. 
Eqs. (5.42), (5.44), (5.45), (5.47), (5.82), (5.83): Replace G3 by 1G31. 
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There are also a couple of typos. 2/3 In the middle of page 129, E. should read 
3/2 

E. - In Eq. (5.71) the inner parenthesis should be squared - as in the preceding 
equation. 
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