
USPAS Graduate Accelerator Physics Homework 13

Due date: Friday February 12, 2021

1 Nonlinear Tune Tracking Data

(Modified from Peggs/Satogata problem 10.1) You have simulated the RHIC accelerator with a set of nine particles launched with design momentum ($\delta = 0$), x' = 0, and initial x offsets of 1, 2, ... 9 mm at a location with horizontal beta function $\beta_x = 40$ m. You "measure" the fractional tunes of these particles from the plot shown above to be:

$x[\mathrm{mm}]$	Q_x	Q_y
1	0.1903	0.1800
2	0.1910	0.1802
3	0.1923	0.1809
4	0.1941	0.1816
5	0.1963	0.1825
6	0.1991	0.1837
7	0.2024	0.1851
8	0.2061	0.1866
9	0.2105	0.1884

- a) (4 points) Plot Q_x and Q_y vs. J_x from the above table.
- b) (3 points) What is the simplest fit to the tune vs. action data?
- c) (3 points) What is the simplest and most likely dominant nonlinearity?

2 Dodecapole Detuning

(10 points) (Modified from Peggs/Satogata problem 10.2) If a single dodecapole (12-pole) magnet delivers an angular kick of

$$\Delta x' = -g_{12}x^5 \tag{2.1}$$

and causes normalized phase space detuning

$$Q_x = Q_{0x} + Ag_{12}a^B (2.2)$$

Calculate the numerical values of coefficients A and B. Note that here you must only calculate the effect of the detuning to *first order* in dodecapole strength.