

U.S. Particle Accelerator School

Education in Beam Physics and Accelerator Technology

Sextupoles and Chromaticity Part II

Daniel Marx (BNL)

Steve Peggs (BNL), Todd Satogata (Jlab & ODU), Nilanjan Banerjee (UChicago)

> USPAS, Accelerator Physics February 10, 2021

The Electron-Ion Collider (EIC)

Hadron storage ring 40-275 GeV

(existing: RHIC)

Electron storage ring (ESR) 2.5–18 GeV

(new)

Electron rapid cycling synchrotron (new)

High luminosity interaction region(s)

(new)

- $L = 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$
- Superconducting magnets
- 25 mrad crossing angle with crab cavities
- Spin rotators (longitudinal spin)

Outline

- Recap of yesterday's lecture
- Derivation of 1st & 2nd order chromaticity
- W-vector (Montague) formalism
- Chromaticity correction in a collider
- Chromaticity correction and dynamic aperture in the EIC ESR

Chromaticity is the variation of tune with momentum – and higher orders do matter!

Example of EIC ESR lattice with linear chromaticity corrected

February 10, 2021

We need to minimize tune variation with momentum to increase momentum acceptance.

February 10, 2021

Daniel Marx, USPAS

Chromaticity:
$$\chi \equiv \frac{\mathrm{d}Q}{\mathrm{d}\delta}$$

The natural chromaticity is always negative. Why?

$$\chi_{\text{nat}=\frac{N}{2\pi}\frac{\mathrm{d}\phi}{\mathrm{d}\delta}=-\frac{N}{2\pi}\tan(\phi/2)=-Q\frac{\tan(\phi/2)}{\phi/2}}$$

This equation applies to an ideal lattice of FODO cells. In a collider, the interaction points (IPs) also contribute strongly.

To which value do we want to set linear chromaticity?

Chromaticity can be corrected with sextupoles.

Net linear kick is: $\Delta x' = -q \cdot x + (q - 2\eta S) x \delta$ So can correct chromaticity by setting sextupole strengths to: $S = \frac{q}{2\eta}$

February 10, 2021

Sextupoles are grouped into families (all with the same strength).

A sext family that increases the **horizontal** chromaticity necessarily decreases the **vertical** chromaticity.

At least 2 families of sextupoles are needed to set both horizontal and vertical chromaticities to small values.

Sextupoles can only correct the chromaticity if placed in a **dispersive section**. The closer they are placed to quads, the better the correction.

February 10, 2021

There are 4 kinds of phase-space trajectories that are observed in simulations:

- Regular non-resonant trajectories
- Regular resonant trajectories
- Rapidly divergent regular trajectories
- Chaotic trajectories

Which ones will result in particle loss?

What we ultimately want is a large stable region in phase space in which particles survive – dynamic aperture.

Outline

- Recap of yesterday's lecture
- Derivation of 1st & 2nd order chromaticity
- W-vector (Montague) formalism
- Chromaticity correction in a collider
- Chromaticity correction and dynamic aperture in the EIC ESR

Derivation of 1st & 2nd order chromaticity

Hill's equation:

$$z'' + Kz = 0 \qquad \qquad z = x \text{ or } y$$

Solution:

 $\vec{Z}(s) = M(s_0; s)\vec{Z}(s_0)$

$$\vec{Z}(s) \equiv \begin{pmatrix} z(s) \\ z'(s) \end{pmatrix}$$

where

$$\begin{cases} M(s_0; s_0) &= I\\ \frac{\mathrm{d}M}{\mathrm{d}s} &= AM = \left[A^{(0)} + \sum_{n=1}^{\infty} A^{(n)} \delta^n \right] \left[M^{(0)} + \sum_{n=1}^{\infty} M^{(n)} \delta^n \right] \end{cases}$$

 ΔK represents quadrupolar field errors

 ${
m M}({
m s}_1; {
m s}_2)$ is fractionalturn matrix from ${
m s}_1$ to ${
m s}_2$

 $M^{(n)}$ is nth order expansion in δ

$$A^{(0)} \equiv \begin{pmatrix} 0 & 1 \\ -K^{(0)} & 0 \end{pmatrix} ; A^{(1)} \equiv \begin{pmatrix} 0 & 0 \\ -K^{(1)} & 0 \end{pmatrix} ; A^{(2)} \equiv \begin{pmatrix} 0 & 0 \\ -K^{(2)} & 0 \end{pmatrix} ; \dots$$

February 10, 2021

$$\begin{array}{lll} \text{From previous slide:} & \begin{cases} M(s_0; s_0) &= I \\ \frac{\mathrm{d}M}{\mathrm{d}s} &= AM = \left[A^{(0)} + \sum_{n=1}^{\infty} A^{(n)} \delta^n \right] \left[M^{(0)} + \sum_{n=1}^{\infty} M^{(n)} \delta^n \right] \\ \text{So:} & \\ \begin{cases} M^{(0)}(s_0; s_0) &= I \\ \frac{\mathrm{d}M^{(0)}}{\mathrm{d}s} &= A^{(0)} M^{(0)} \end{cases} \\ \begin{cases} M^{(n)}(s_0; s_0) &= \mathbf{0} \\ \frac{\mathrm{d}M^{(n)}}{\mathrm{d}s} &= A^{(0)} M^{(n)} + \sum_{j=0}^{n-1} A^{(n-j)} M^{(j)}, n \ge 1 \end{cases} & \text{e.g.} \quad \frac{\mathrm{d}M^{(1)}}{\mathrm{d}s} = A^{(0)} M^{(1)} + A^{(1)} M^{(0)} \\ \frac{\mathrm{d}M^{(2)}}{\mathrm{d}s} = A^{(0)} M^{(2)} + A^{(1)} M^{(1)} + A^{(2)} M^{(0)} \end{cases}$$

The following relation holds:

$$\frac{M^{(n)}(s_0;s) = M^{(0)}(s_0;s) \int_{s_0}^{s} ds' M^{(0)}(s';s_0) \sum_{j=0}^{n-1} A^{(n-j)}(s') M^{(j)}(s_0;s')}{e.g.} = M^{(0)}(s_0;s) \int_{s_0}^{s} M^{(0)}(s';s_0) A^{(1)}(s') M^{(0)}(s_0;s') ds'}{M^{(2)}(s_0;s) = M^{(0)}(s_0;s) \left[\int_{s_0}^{s} M^{(0)}(s';s_0) A^{(2)}(s') M^{(0)}(s_0;s') ds' + \int_{s_0}^{s} M^{(0)}(s';s_0) A^{(1)}(s') M^{(1)}(s_0;s') ds' \right]}$$
Exhause 10,2021

February 10, 2021

$$\begin{aligned} \cos(\mu) &= \frac{1}{2} \operatorname{Tr}[M(0;C)] & \operatorname{Taylor}_{\operatorname{series:}} \cos(\mu) = \cos(\mu^{(0)}) - \sin(\mu^{(0)}) \Delta \mu - \cos(\mu^{(0)}) \frac{(\Delta \mu)^2}{2} + \dots \\ & \\ \mathbf{Select 1^{st} order:} & \mu = \mu^{(0)} + \Delta \mu = \mu^{(0)} + \mu^{(1)} \delta + \mu^{(2)} \delta^2 + \dots \\ & -\mu^{(1)} \sin\left(\mu^{(0)}\right) = \frac{1}{2} \operatorname{Tr} \left[\int_0^C M^{(0)}(s_1;C) A^{(1)}(s_1) M^{(0)}(0;s_1) \mathrm{d}s_1 \right] & Tr[XYZ] = Tr[ZXY] \\ & = \frac{1}{2} \operatorname{Tr} \left[\int_0^C M^{(0)}(0;C) A^{(1)} \mathrm{d}s_1 \right] & M(0;C) = \begin{pmatrix} \cos(\mu) + \alpha \sin(\mu) & \beta \sin(\mu) \\ -\gamma \sin(\mu) & \cos(\mu) - \alpha \sin(\mu) \end{pmatrix} \\ & = -\frac{1}{2} \int_0^C \beta^{(0)}(s) \sin(\mu^{(0)}) K^{(1)}(s) \mathrm{d}s & A^{(1)} \equiv \begin{pmatrix} 0 & 0 \\ -K^{(1)} & 0 \end{pmatrix} \end{aligned}$$

February 10, 2021

$$\begin{aligned} \cos(\mu) &= \frac{1}{2} \mathrm{Tr}[M(0;C)] \\ & \operatorname{Select} 2^{\mathrm{nd}} \operatorname{order}: \\ & -\mu^{(2)} \sin\left(\mu^{(0)}\right) - \frac{(\mu^{(1)})^2}{2} \cos\left(\mu^{(0)}\right) \\ & \mu &= \mu^{(0)} + \Delta\mu = \mu^{(0)} + \mu^{(1)} \delta + \mu^{(2)} \delta^2 + \dots \\ & = \frac{1}{2} \mathrm{Tr} \left[\int_0^C \mathrm{d}_{s_1} M^{(0)}(s_1;C) A^{(2)}(s_1) M^{(0)}(0;s_1) + \int_0^C \mathrm{d}_{s_2} M^{(0)}(s_2;C) A^{(1)}(s_2) M^{(1)}(0;s_2) \right] \\ & = \frac{1}{2} \mathrm{Tr} \left[\int_0^C \mathrm{d}_{s_1} M^{(0)}(s_1;C) A^{(2)}(s_1) M^{(0)}(0;s_1) + \int_0^C \mathrm{d}_{s_2} \int_0^{s_2} \mathrm{d}_{s_1} M^{(0)}(s_2;C) A^{(1)}(s_2) M^{(0)}(s_1;s_2) A^{(1)}(s_1) M^{(0)}(0;s_1) \right] \\ & = -\frac{1}{2} \int_0^C \beta^{(0)}(s) \sin\left(\mu^{(0)}\right) K^{(2)}(s) \mathrm{d}_s - \frac{1}{2} \int_0^C \mathrm{d}_{s_2} \int_0^{s_2} \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \sin\left(\psi(s_2) - \psi(s_1)\right) \sin\left(\psi(s_2) - \psi(s_1)\right) - \mu^{(0)} \right) \\ & = -\frac{1}{2} \int_0^C \beta^{(0)}(s) \sin\left(\mu^{(0)}\right) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0^C \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \sin\left(|\psi(s_2) - \psi(s_1)|\right) \sin\left(|\psi(s_2) - \psi(s_1)| - \mu^{(0)} \right) \\ & = -\frac{1}{2} \int_0^C \beta^{(0)}(s) \sin\left(\mu^{(0)}\right) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0^C \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \left[\cos\left(\mu^{(0)}\right) - \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \right] \\ & = -\frac{1}{2} \int_0^C \beta^{(0)}(s) \sin\left(\mu^{(0)}\right) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0^C \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \left[\cos\left(\mu^{(0)}\right) - \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \right] \\ & = -\frac{1}{2} \int_0^C \beta^{(0)}(s) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0^C \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \right] \\ & = \frac{1}{2} \int_0^C \beta^{(0)}(s) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0^C \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \right] \\ & = \frac{1}{2} \int_0^C \beta^{(0)}(s) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0^C \mathrm{d}_{s_1} K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \right] \\ & = \frac{1}{2} \int_0^C \beta^{(0)}(s) K^{(2)}(s) \mathrm{d}_s - \frac{1}{8} \frac{1}{8} \int_0^C \mathrm{d}_{s_2} \int_0$$

$$\mu^{(2)} = \frac{1}{2} \int_0^C \beta^{(0)}(s) K^{(2)}(s) \mathrm{d}s - \frac{1}{8\sin(\mu^{(0)})} \int_0^C \mathrm{d}s_2 \int_0^C \mathrm{d}s_1 K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \mathrm{d}s_2 \int_0^C \mathrm{d}s_2 \int_0^C \mathrm{d}s_1 K^{(1)}(s_1) \beta^{(0)}(s_1) K^{(1)}(s_2) \beta^{(0)}(s_2) \cos\left(2|\psi(s_2) - \psi(s_1)| - \mu^{(0)}\right) \mathrm{d}s_2$$

Substitute in:
$$\frac{\beta^{(1)}(s)}{\beta^{(0)}(s)} = -\frac{1}{2\sin(\mu^{(0)})} \int_0^C K^{(1)}(s')\beta^{(0)}(s')\cos\left(2|\psi(s') - \psi(s)| - \mu^{(0)}\right) ds'$$

Homework exercise:
Derive this

$$\mu^{(2)} = \frac{1}{2} \int_0^C \beta^{(0)}(s) K^{(2)}(s) \mathrm{d}s + \frac{1}{4} \int_0^C \beta^{(1)}(s) K^{(1)}(s) \mathrm{d}s$$

February 10, 2021

Daniel Marx, USPAS

16

Expand K in vertical plane:

$$\Delta K_y = -K_1 \left(\frac{1}{1+\delta} - 1 \right) - \frac{K_2}{1+\delta} \left(\eta \delta + \eta^{(2)} \delta^2 + \dots \right)$$

= $\left(\frac{K_1 - K_2 \eta}{K_y^{(1)}} \right) \delta + \left(\frac{-K_1 + K_2 \eta - K_2 \eta^{(2)}}{K_y^{(2)}} \right) \delta^2 + \mathcal{O}(\delta^3)$

 $(1+\delta)^{-1} = 1 - \delta + \delta^2 - \dots$

 K_1 : Quadrupole strength K_2 : Sextupole strength η : Linear dispersion $\eta^{(2)}$: 2nd-order dispersion

$$\mu_y^{(1)} = \frac{\mathrm{d}\mu}{\mathrm{d}\delta}\Big|_{\delta=0} = 2\pi \frac{\mathrm{d}Q}{\mathrm{d}\delta} = \frac{1}{2} \int_0^C \beta_y^{(0)} K_y^{(1)} \mathrm{d}s = \frac{1}{2} \int_0^C \beta_y^{(0)} \left(K_1 - K_2\eta\right) \mathrm{d}s$$

$$\mu_{y}^{(2)} = \frac{1}{2} \int_{0}^{C} \beta_{y}^{(0)} K_{y}^{(2)} ds + \frac{1}{4} \int_{0}^{C} \beta_{y}^{(1)} K_{y}^{(1)} ds$$
$$= \frac{1}{2} \int_{0}^{C} \beta_{y}^{(0)} \left(-K_{1} + K_{2}\eta - K_{2}\eta^{(2)} \right) ds + \frac{1}{4} \int_{0}^{C} \beta_{y}^{(1)} \left(K_{1} - K_{2}\eta \right) ds$$

$$\mu_y^{(2)} = \frac{1}{2} \frac{\mathrm{d}^2 \mu}{\mathrm{d}\delta^2} \Big|_{\delta=0} = \pi \frac{\mathrm{d}^2 Q}{\mathrm{d}\delta^2} = -\mu_y^{(1)} - \frac{1}{2} \int_0^C \beta_y^{(0)} K_2 \eta^{(2)} \mathrm{d}s + \frac{1}{4} \int_0^C \beta_y^{(1)} \left(K_1 - K_2 \eta\right) \mathrm{d}s$$

February 10, 2021

Outline

- Recap of yesterday's lecture
- Derivation of 1st & 2nd order chromaticity
- W-vector (Montague) formalism
- Chromaticity correction in a collider
- Chromaticity correction and dynamic aperture in the EIC ESR

W-vector (Montague) formulation

We know:

$$\frac{\mathrm{d}\mu}{\mathrm{d}s} = \frac{1}{\beta} \qquad \frac{\mathrm{d}\beta}{\mathrm{d}s} = -2\alpha$$
$$\frac{\mathrm{d}^2\sqrt{\beta}}{\mathrm{d}s^2} + K\sqrt{\beta} - \beta^{-3/2} = 0 \quad (8.35)$$

Differentiation:

$$\frac{\mathrm{d}^2 \sqrt{\beta}}{\mathrm{d}s^2} = -\frac{\mathrm{d}\alpha}{\mathrm{d}s}\beta^{-1/2} - \alpha^2 \beta^{-3/2}$$

Substitute into (8.35) & simplify: $\frac{\mathrm{d}\alpha}{\mathrm{d}s} = K\beta - \frac{1+\alpha^2}{\beta}$

February 10, 2021

Define:

$$B = \frac{(\beta_1 - \beta_0)}{(\beta_0 \beta_1)^{1/2}} \qquad A = \frac{(\alpha_1 \beta_0 - \alpha_0 \beta_1)}{(\beta_0 \beta_1)^{1/2}}$$

$$\psi = \frac{1}{2}(\mu_0 + \mu_1) \qquad \Delta K = K_1 - K_0$$

(not the same $_{K_1}$ as slide 17!

0: central orbit 1: off-momentum orbit

$$\frac{\mathrm{d}\psi}{\mathrm{d}s} = \frac{1}{2} \frac{(\beta_0 + \beta_1)}{\beta_0 \beta_1}$$

After differentiation and some algebra:

$$\frac{\mathrm{d}B}{\mathrm{d}s} = -2A\frac{\mathrm{d}\psi}{\mathrm{d}s}$$
$$\frac{\mathrm{d}A}{\mathrm{d}s} = 2B\frac{\mathrm{d}\psi}{\mathrm{d}s} + (\beta_0\beta_1)^{1/2}\Delta K$$

In an achromatic region, $\Delta K = 0$

From previous slide: $\frac{\mathrm{d}B}{\mathrm{d}s} = -2A\frac{\mathrm{d}\psi}{\mathrm{d}s}$ $\frac{\mathrm{d}A}{\mathrm{d}s} = 2B\frac{\mathrm{d}\psi}{\mathrm{d}s} + (\beta_0\beta_1)^{1/2}\Delta K$

$$\frac{\mathrm{d}}{\mathrm{d}s}(A^2 + B^2) = 0$$

: $(A^2 + B^2) = \mathrm{Constant}$

$$\frac{\mathrm{d}B}{\mathrm{d}\psi} = -2A \qquad \qquad \frac{\mathrm{d}A}{\mathrm{d}\psi} = 2B$$
$$\frac{\mathrm{d}^2B}{\mathrm{d}\psi^2} + 4B = 0 \qquad \qquad \frac{\mathrm{d}^2A}{\mathrm{d}\psi^2} + 4A = 0$$

A and B oscillate at twice ψ

Now redefine variables in limit $\delta \to 0$

$$b = \lim_{\delta \to 0} \frac{B}{\delta} = \lim_{\delta \to 0} \frac{1}{\delta} \frac{(\beta_1 - \beta_0)}{(\beta_0 \beta_1)^{1/2}}$$
$$a = \lim_{\delta \to 0} \frac{A}{\delta} = \lim_{\delta \to 0} \frac{1}{\delta} \frac{(\alpha_1 \beta_0 - \alpha_0 \beta_1)}{(\beta_0 \beta_1)^{1/2}}$$
$$\psi \to \mu_0 \qquad \Delta k = \lim_{\delta \to 0} \frac{\Delta K}{\delta}$$

February 10, 2021

Define:

 $\vec{W} = b + ia$

In achromatic regions *W* has a constant amplitude and rotates at twice the average betatron phase advance.

When passing through a quad or sext its amplitude is modified.

Now consider what happens when we pass through a thin quad or sext

 $\frac{\mathrm{d}b}{\mathrm{d}s} = -2a\frac{\mathrm{d}\mu_0}{\mathrm{d}s}$ $\frac{\mathrm{d}a}{\mathrm{d}s} = 2b\frac{\mathrm{d}\mu_0}{\mathrm{d}s}0 + (\beta_0\beta_1)^{1/2}\Delta k$

So

$$\Delta b = 0$$

$$\Delta a = (\beta_0 \beta_1)^{1/2} \Delta k_n \Delta s \approx \beta_0 K_1 L_q \text{ for quad}$$

$$\Delta a = (\beta_0 \beta_1)^{1/2} \Delta k_n \Delta s \approx -\beta_0 \eta K_2 L_s \text{ for sext}$$

An observer downstream of quad would see:

 $\begin{cases} \Delta a(\mu) &\approx \beta_0 K_1 L_q \cos(2\mu) \\ \Delta b(\mu) &\approx \beta_0 K_1 L_q \sin(2\mu) \end{cases}$

 $\Delta \mu_0 = 0$ β -functions same before and after thin lens

An observer downstream of sext would see:

$$\begin{cases} \Delta a(\mu) &\approx -\beta_0 \eta K_2 L_s \cos(2\mu) \\ \Delta b(\mu) &\approx -\beta_0 \eta K_2 L_s \sin(2\mu) \end{cases}$$

February 10, 2021

What happens to vertical W-vector in a 60° FODO cell?

What happens to vertical W-vector in a 60° FODO cell?

 $\Delta b = 0$ $\Delta a \approx \beta_0 K_1 L_q \text{ for quad}$ $\Delta a \approx -\beta_0 \eta K_2 L_s \text{ for sext}$

February 10, 2021

Outline

- Recap of yesterday's lecture
- Derivation of 1st & 2nd order chromaticity
- W-vector (Montague) formalism
- Chromaticity correction in a collider
- Chromaticity correction and dynamic aperture in the EIC ESR

Chromaticity correction in a collider

- Colliders have low- β insertions that contribute greatly to chromaticity
- Low- β quads chromaticity cannot be compensated locally, as they are in dispersion-free region, so need to use arcs
- By dividing sexts into families can progressively reduce W to zero over an arc

- We want a sextupole scheme that builds up the amplitude of W to compensate the IP chromaticity
- Building up the amplitude of *W* **slowly** keeps individual sextupole strengths to a minimum, reducing nonlinearities and resonance excitation
- In order for a series of sextupoles to add constructively, *W* needs to rotate by $2n\pi$ between sextupoles
- Start with all F-sexts equal and all D-sexts equal, set to compensate natural chrom
- Increment SF family by $\Delta k'_{\rm SF}$

February 10, 2021

Cell betatron phase advance = μ_0

(N+1) cells in each group

So phase condition is: $(N+1)\mu_0 = n\pi$, where n = integer

$$\begin{split} &\{S_F, S_D; S_{F1}, S_{D1}; S_{F2}, S_{D2}; ...; S_{FN}, S_{DN}\} \{S_F, S_D; S_{F1}, S_{D1}; S_{F2}, S_{D2}; ...; S_{FN}, S_{DN}\} \\ & \leftarrow \qquad lst \ group \qquad \rightarrow \leftarrow \qquad 2nd \ group \qquad \rightarrow \\ &\{S_F, S_D; S_{F1}, S_{D1}; S_{F2}, S_{D2}; ...; S_{FN}, S_{DN}\} \{S_F, S_D; S_{F1}, S_{D1}; S_{F2}, S_{D2}; ...; S_{FN}, S_{DN}\} \\ & \leftarrow \qquad 3rd \ group \qquad \rightarrow \leftarrow \qquad Last \ group \qquad \rightarrow \end{split}$$

We do not want to excite 3Q = p integer resonance. So $3(N+1)\mu_0 = (2m+1)\pi$, where m = integer

The 2 conditions mean: 3n = 2m + 1 *n* has to be an odd integer *n* has to be an odd integer $\mu_0 = \pi/3$ for n=1, N=2 and m=1 i.e. 4 families $\mu_0 = \pi/3$ for n=1, N=2 and m=1 i.e. 6 families $\mu_0 = \pi/4$ for n=1, N=3 and m=1 i.e. 8 families \downarrow etc. $\mu_0 = 3\pi/4$ for n=3, N=3 and m=4 i.e. 8 families $\mu_0 = 3\pi/5$ for n=3, N=4 and m=4 i.e. 10 families

 \downarrow etc.

February 10, 2021

60° lattice

All 3 SF families incremented equally. No net *W* vector excited, but chromaticity changes.

By setting SF1 & SF2, we can choose our net *W* vector. Here we use (SF1+SF2). By setting SF1 & SF2, we can choose our net *W* vector. Here we use (SF2-SF1).

February 10, 2021

90° lattice

With a 90° lattice it is not possible to choose the direction of the *W* vector.

The phase advance must be set such that the *W* vector arrives parallel to the *a* axis.

Outline

- Recap of yesterday's lecture
- Derivation of 1st & 2nd order chromaticity
- W-vector (Montague) formalism
- Chromaticity correction in a collider
- Chromaticity correction and dynamic aperture in the EIC ESR

Chromaticity correction in the EIC ESR

February 10, 2021

$$\epsilon_x \,[{\rm m}] = F(\Delta \phi) \, \frac{E^2 \,[{\rm GeV}^2]}{J_x N_d^3}$$
 (12.31)

EIC: Electron Storage Ring (ESR)

Parameter	60°	90°
Beam energy, E_0 [GeV]	10	18
Circumference, C [m]	3834	3834
Emittance, ϵ_x [nm]	24.0	28.3
Energy spread, σ_{δ} [10 ⁻⁴]	5.54	9.83
Betatron tunes, ν_x/ν_y	45.12/36.1	48.12/43.1
Chromaticity, ξ_{0x}/ξ_{0y}	-83/-91	-85/-94
IP betas, β_x^* / β_y^* [m]	0.42/0.05	0.42/0.05
Distance from IP to quad, L^* [m]	5.3	5.3

 $\eta_{\rm X}[{\rm m}], \, \eta_{\rm Y} \, [{\rm m}]$

Interaction region

Different solutions are required for 60° and 90° lattices

- For 60° lattice can use 6 families (3 families per plane)
- For 90° lattice can use 4 families (2 families per plane)

90° lattice is most challenging:

- Additional constraints on phase advance to first sextupoles in arcs
- Larger rms momentum spread

Ultimately it's all about maximizing lifetime!

- We want there to be a large volume in phase space in which a particle survives
- Dynamic aperture describes the region in *x-y* space in which a particle will survive for many turns
- Momentum acceptance describes the momentum range in which a particle will survive for many turns
- Touschek scattering describes the interaction of electrons inside a bunch with a transfer of transverse momentum to longitudinal momentum
- Particles will survive for a longer time if the momentum acceptance is larger
- In the ESR, each electron bunch will be frequently replaced (every 6 mins), so long beam lifetime is only required to keep the charge variation small

$$\frac{1}{\tau} \propto \frac{N}{\gamma^2 \sigma_x \sigma_y \sigma_z \delta_{\rm acc}^3}$$

The best way to compute dynamic aperture is to track over many turns

- For hadrons need to track over millions or billions of turns
- For electrons only need to track over thousands of turns due to synchrotron damping

A survival plot shows the particles that survive after many turns.

Need to do this for various momentum offsets.

Goals:

- Correct the linear chromaticity to +1 in both planes
- Achieve 10σ dynamic aperture on-momentum
- Achieve 10σ momentum acceptance (0.6% for 60° ; 1% for 90°)

In order to achieve sufficient on-momentum dynamic aperture, need to keep sextupole strengths down and ensure there is no build-up of nonlinear resonances

Dynamic aperture at 18 GeV, 90° lattice, 1IP Starting point: 2 families of sextupoles

Dynamic aperture at 18 GeV, 90° lattice, 1IP After a lot of work: 10 families of sextupoles

Y. Cai

February 10, 2021

Dynamic aperture at 18 GeV, 90° lattice, 1IP 10 families of sextupoles

Y. Cai

February 10, 2021

Daniel Marx, USPAS

Dynamic aperture at 18 GeV, 90° lattice, 2IP

- There is the option of including a second IP (and detector)
- This is even more challenging, as chromaticity is even higher (-125 in vertical plane)
- Work is in progress to achieve sufficient dynamic aperture

It is possible to use the 2 IPs to cancel out the β beat by setting the betatron phase advance between the IPs? What value is required?

It is possible to use the 2 IPs to cancel out the β beat by setting the betatron phase advance between the IPs? What value is required?

Dynamic aperture at 18 GeV, 90° lattice, 2IP Setting phase between IPs 2 families of sextupoles in rest of ring

February 10, 2021

After a lot of work: 14 independent families of sextupoles Phase trombones to adjust phase between arcs

Y. Cai

February 10, 2021

After a lot of work: 14 independent families of sextupoles Phase trombones to adjust phase between arcs

February 10, 2021

Daniel Marx, USPAS

47

Summary

- Chromaticity correction is essential for all circular, strong-focusing synchrotrons
- Chromaticity is not just the linear term higher order terms may be important as well
- Derived formulae for 1^{st} and 2^{nd} order chromaticity 2^{nd} order term depends on β beat
- Introduced W functions a useful tool for correcting 2nd order chromaticity
- In colliders the interaction region contributes greatly to chromaticity and introduces a β beat, which we can compensate with sextupole families in the arcs
- Chromaticity compensation in the EIC ESR is challenging due to the large natural chromaticity and many constraints in the lattice
- Dynamic aperture optimization is important to maximize beam lifetime
- There are many ways to approach dynamic aperture optimization often you just have to try things out!

Acknowledgments

- Yongjun Li, Christoph Montag, Steve Tepikian (BNL)
- Georg Hoffstaetter, Jonathan Unger (Cornell)
- Yunhai Cai & Yuri Nosochkov (SLAC)
- EIC collaboration

USPAS, BNL and the EIC are funded by the Department of Energy, Office of Science

References

- Peggs, S. & Satogata, T., Introduction to Accelerator Dynamics, Cambridge University Press, 2017 https://doi.org/10.1017/9781316459300
- Fartoukh, S. Second order chromaticity correction of LHC V6.0 at collision, LHC Project Report 308, 1999 https://cds.cern.ch/record/403591?ln=en
- Montague, B.W. Linear optics for improved chromaticity correction, LEP note 165, 1979
 http://cds.cern.ch/record/443342/
- Bryant, P.J. & Johnsen, K. *The Principles of Circular Accelerators and Storage Rings*, Cambridge University Press, 1993 https://doi.org/10.1017/CBO9780511563959
- Bryant, P.J. *Planning sextupole families in a circular collider*, CERN Accelerator School, 1995 https://doi.org/10.5170/CERN-1995-006.101
- Haerer, B. Lattice design and beam optics calculations for the new large-scale electron-positron collider FCC-ee, CERN-THESIS,2017-073, 2017 https://cds.cern.ch/record/2271820
- EIC Conceptual Design Report, 2021
- www.bnl.gov/eic/