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The Electron-Ion Collider (EIC)
Hadron storage ring 40-275 GeV 
(existing: RHIC) 
Electron storage ring (ESR) 2.5–18 GeV 
(new)
Electron rapid cycling synchrotron
(new)

High luminosity interaction region(s) 
(new)
● L = 1034 cm-2 s-1

● Superconducting magnets
● 25 mrad crossing angle with crab cavities
● Spin rotators (longitudinal spin)
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The Electron-Ion Collider (EIC)
Circumference = 3.8 km
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Outline
● Recap of yesterday’s lecture
● Derivation of 1st & 2nd order chromaticity
● W-vector (Montague) formalism
● Chromaticity correction in a collider
● Chromaticity correction and dynamic aperture in 

the EIC ESR



February 10, 2021 Daniel Marx, USPAS 5

Chromaticity is the variation of tune with momentum
– and higher orders do matter!

Example of EIC 
ESR lattice with 
linear chromaticity 
corrected
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We need to minimize tune variation with momentum to 
increase momentum acceptance.

Homework 9
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Chromaticity:

The natural chromaticity is always negative. Why?

This equation applies to an ideal lattice of FODO cells. 
In a collider, the interaction points (IPs) also contribute 
strongly.

To which value do we want to set linear chromaticity?
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Chromaticity can be corrected with sextupoles.

Net linear kick is: 
So can correct chromaticity by setting sextupole strengths 
to: 

Fig. 9.1 Peggs & 
Satogata
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Sextupoles are grouped into families (all with the same 
strength).

A sext family that increases the horizontal chromaticity 
necessarily decreases the vertical chromaticity.

At least 2 families of sextupoles are needed to set both 
horizontal and vertical chromaticities to small values.

Sextupoles can only correct the chromaticity if placed in a 
dispersive section. The closer they are placed to quads, 
the better the correction.
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There are 4 kinds of phase-space trajectories that are 
observed in simulations:
● Regular non-resonant trajectories
● Regular resonant trajectories
● Rapidly divergent regular trajectories
● Chaotic trajectories

Which ones will result in particle loss?

What we ultimately want is a large stable region in phase 
space in which particles survive – dynamic aperture.
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Outline
● Recap of yesterday’s lecture
● Derivation of 1st & 2nd order chromaticity
● W-vector (Montague) formalism
● Chromaticity correction in a collider
● Chromaticity correction and dynamic aperture in 

the EIC ESR
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Derivation of 1st & 2nd order chromaticity

Solution:

where

       represents 
quadrupolar field errors

Hill’s equation:

               is fractional-
turn matrix from     to  

         is nth order 
expansion in 
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The following relation holds:

From previous slide:

e.g.

So:

e.g.
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Select 1st order:

So:

Taylor 
series:

1st order chromaticity
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Select 2nd order:
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Fig. 8.3 (Peggs & Satogata)

Substitute in:

Homework exercise: 
Derive this
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Expand     in vertical plane:
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Outline
● Recap of yesterday’s lecture
● Derivation of 1st & 2nd order chromaticity
● W-vector (Montague) formalism
● Chromaticity correction in a collider
● Chromaticity correction and dynamic aperture in 

the EIC ESR
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W-vector (Montague) formulation

(8.35)

Define:We know:

Differentiation:

Substitute into (8.35) & simplify:

0: central orbit
1: off-momentum orbit

After differentiation and some algebra:

(not the same      as slide 17!) 
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From previous slide:

In an achromatic region, 

A and B oscillate at twice 

Now redefine variables in limit Define:

In achromatic regions W has a constant 
amplitude and rotates at twice the average 
betatron phase advance.
When passing through a quad or sext its 
amplitude is modified.Haerer, 2017
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Now consider what happens when we 
pass through a thin quad or sext

β-functions same 
before and after thin 
lens

So 

An observer downstream of quad would see:  An observer downstream of sext would see:  
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a

b

What happens to vertical W-vector in a 60° FODO cell?
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Uncompensated Compensated

Haerer, 2017

What happens to vertical W-vector in a 60° FODO cell?
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Outline
● Recap of yesterday’s lecture
● Derivation of 1st & 2nd order chromaticity
● W-vector (Montague) formalism
● Chromaticity correction in a collider
● Chromaticity correction and dynamic aperture in 

the EIC ESR
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Chromaticity correction in a collider
● Colliders have low-β insertions that contribute greatly to chromaticity

● Low-β quads chromaticity cannot be compensated locally, as they are in dispersion-
free region, so need to use arcs

● By dividing sexts into families can progressively reduce W to zero over an arc

Bryant & Johnsen, 
1993
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● We want a sextupole scheme that builds up the amplitude of W to compensate the IP 
chromaticity

● Building up the amplitude of W slowly keeps individual sextupole strengths to a 
minimum, reducing nonlinearities and resonance excitation

● In order for a series of sextupoles to add constructively, W needs to rotate by 2nπ 
between sextupoles

● Interleaved scheme:

● Start with all F-sexts equal and all D-sexts equal, set to compensate natural chrom

● Increment SF family by 

Bryant, 
1995
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Cell betatron phase advance = 

              cells in each group

So phase condition is: 

We do not want to excite              integer resonance. So

 The 2 conditions mean:

  n has to be an odd integer
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60° lattice

All 3 SF families 
incremented equally.
No net W vector 
excited, but 
chromaticity changes.

By setting SF1 & SF2, 
we can choose our net 
W vector. Here we use 
(SF1+SF2).

By setting SF1 & SF2, 
we can choose our net 
W vector. Here we use 
(SF2-SF1).

Bryant, 
1995



February 10, 2021 Daniel Marx, USPAS 29

90° lattice

With a 90° lattice it is not 
possible to choose the direction 
of the W vector.

The phase advance must be set 
such that the W vector arrives 
parallel to the a axis.

Bryant, 
1995
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Outline
● Recap of yesterday’s lecture
● Derivation of 1st & 2nd order chromaticity
● W-vector (Montague) formalism
● Chromaticity correction in a collider
● Chromaticity correction and dynamic 

aperture in the EIC ESR
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Chromaticity correction in the EIC ESR
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EIC: Electron Storage Ring (ESR)

(12.31)
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Lattice functions in 
the ESR for 1 IP

Dispersion

β functions

16 regular 
FODO cells 
per arc

IP6 IP6IP8
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Interaction region
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Different solutions are required for 60° and 90° lattices
● For 60° lattice can use 6 families (3 families per plane)
● For 90° lattice can use 4 families (2 families per plane)

90° lattice is most challenging:
● Additional constraints on phase advance to first sextupoles in arcs
● Larger rms momentum spread

Bryant, 
1995

60° lattice 90° lattice
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Ultimately it’s all about maximizing lifetime!

● We want there to be a large volume in phase space in which a particle 
survives

● Dynamic aperture describes the region in x-y space in which a particle will 
survive for many turns

● Momentum acceptance describes the momentum range in which a particle 
will survive for many turns

● Touschek scattering describes the interaction of electrons inside a bunch 
with a transfer of transverse momentum to longitudinal momentum

● Particles will survive for a longer time if the momentum acceptance is larger
● In the ESR, each electron bunch will be frequently replaced (every 6 mins), 

so long beam lifetime is only required to keep the charge variation small
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The best way to compute dynamic aperture is to track over 
many turns
● For hadrons need to track over millions or billions of turns
● For electrons only need to track over thousands of turns due 

to synchrotron damping

A survival plot shows the 
particles that survive 
after many turns.

Need to do this for 
various momentum 
offsets.
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Goals:

● Correct the linear chromaticity to +1 in both planes
● Achieve 10σ dynamic aperture on-momentum
● Achieve 10σ momentum acceptance (0.6% for 60°; 1% for 90°)

In order to achieve sufficient on-momentum dynamic aperture, need 
to keep sextupole strengths down and ensure there is no build-up of 
nonlinear resonances
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Dynamic aperture at 18 GeV, 90° lattice, 1IP
Starting point: 2 families of sextupoles

Y. CaiSimulations in LEGO with RF on;
 no synchrotron radiation; no errors
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Dynamic aperture at 18 GeV, 90° lattice, 1IP
After a lot of work: 10 families of sextupoles

Y. Cai
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Y. Cai

Dynamic aperture at 18 GeV, 90° lattice, 1IP
10 families of sextupoles
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Dynamic aperture at 18 GeV, 90° lattice, 2IP

● There is the option of including a second IP (and detector)
● This is even more challenging, as chromaticity is even higher (-125 

in vertical plane)
● Work is in progress to achieve sufficient dynamic aperture
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IP6 IP8

FFQ
Arc cells: FODO

It is possible to use the 2 IPs to cancel out the β beat by setting the 
betatron phase advance between the IPs?
What value is required?
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IP6 IP8

FFQ
Arc cells: FODO

π π
nπ/2

(n odd)

It is possible to use the 2 IPs to cancel out the β beat by setting the 
betatron phase advance between the IPs?
What value is required?
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Dynamic aperture at 18 GeV, 90° lattice, 2IP
Setting phase between IPs
2 families of sextupoles in rest of ring
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Y. Cai

After a lot of work:
14 independent families of sextupoles
Phase trombones to adjust phase between arcs
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Y. Cai

After a lot of work:
14 independent families of sextupoles
Phase trombones to adjust phase between arcs
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Summary
● Chromaticity correction is essential for all circular, strong-focusing synchrotrons
● Chromaticity is not just the linear term – higher order terms may be important as well
● Derived formulae for 1st and 2nd order chromaticity – 2nd order term depends on β beat
● Introduced W functions – a useful tool for correcting 2nd order chromaticity
● In colliders the interaction region contributes greatly to chromaticity and introduces a β 

beat, which we can compensate with sextupole families in the arcs
● Chromaticity compensation in the EIC ESR is challenging due to the large natural 

chromaticity and many constraints in the lattice
● Dynamic aperture optimization is important to maximize beam lifetime
● There are many ways to approach dynamic aperture optimization – often you just 

have to try things out!
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