CHAPTER 4
PERTURBATIONS OF NONLINEAR RESONANCES —
TUNE MODULATION AND BETA MODULATION

The effects of various types of perturbations on particle motion influenced by
an isolated nonlinear resonance are investigated in this chapter. Two types of
perturbation are of particular interest here: modulation of the machine tune and
modulation of the linear beta functions at the nonlinear magnets driving the

resonarce.

Modulation effects are important for a variety of reasons. From a general dy-
namic viewpoint, the separatrices surrounding nonlinear resonance islands are
extremely fragile under small perturbations such as modulations because they
are homoclinic, or asymptotically joined to the unstable fixed points of the res-
onances (Lichtenberg and Lieberman 1983, Vivaldi 1984). As the modulation
strength grows motion becomes stochastic in a widening area around the separa-
trix; this stochasticity can then act as a noise source for diffusion models that may
be important mechanisms limiting the luminosity lifetimes of present and future
colliders. One of these diffusion models, aptly named modulational diffusion, is
described in greater detail in Chapter 7. Tune modulation is also important in
study of the beam-beam interaction where its inclusion is necessary to reconcile
operational observations with simulation and theory (Peggs and Talman 1986,
Saritepe and Peggs 1991). Modulation methods have been proposed for use in
crystal channeling and parasitic beam extraction at the SSC (Gabella et. al. 1992)
where controlled RF modulation would be used to create trapping resonances in

longitudinal phase space.

Most importantly from the perspective of this dissertation, modulations pro-
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vide a frequency-dependent mechanism for detrapping particles captured within
nonlinear resonance islands. This allows measurement of the island tune () even
in the experimental circumstance of large beam sizes. It is the objective of this
chapter to describe this mechanism within the discrete Hamiltonian context and
to summarize the requirements for both tune modulation and beta modulation to
detrap particles captured near the resonance island fixed points.

The general character and sources of tune modulation and beta modulation
are described in § 4.1. The one-dimensional driven pendulum N-turn Hamiltoni-
an with tune modulation is derived in § 4.2, and the corresponding equations of
motion are developed. In § 4.3 we explore the structure of the tune modulation
parameter space (¢, Qyr) and find four dynamical regions of interest — the adi-
abatic “amplitude-modulation” region, the fast-modulation “phase-modulation”
region, the “strong-sideband” region and a region of chaos where the regular lo-
cal motion around the fixed points vanishes. We investigate the effects of beta
modulation in the N-turn Hamiltonian and compare them to those of tune mod-
ulation in § 4.4, and compare the theoretical predictions of the previous sections

to particle tracking for both modulations in § 4.5.

4.1 SOURCES OF TUNE MODULATION AND BETA MODULATION

If QQy denotes the unperturbed tune, tune modulation is assumed to be of the

form
Qo — Qo + ¢sin(2rQurt) . (4.1)

The tune modulation strength, or depth, is ¢, and (s is the modulation fre-
quency; both are frequency-domain parameters and are expressed in inverse turn-
s. This type of tune modulation unavoidably arises from two sources: ripple on

quadrupole power supplies and coupling of synchrotron oscillations to the tunes via
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chromaticity. The latter is normally the more important source due to the conser-
vative bounds placed on power supply current ripple, on the order of AI/I ~ 107°
to stabilize machine tunes to 1072 accuracy.

With typical chromaticities of several units and fractional momentum offsets 6 of
about 10™*, Equation (2.19) shows that modulation strengths ¢ of approximately
1073 are always present in the Tevatron. The modulation frequency for these
oscillations is the synchrotron frequency, ranging from 1.4 - 1072 at injection to
5.7 - 10™* at collision energies. It is difficult to reduce the momentum spread
of the beam, both because of demands on RF systems and because of coupled
bunch instabilities that appear at high longitudinal beam densities. Reduction of
chromaticities ¢ is also impractical because chromaticities much smaller than a
few units can cause strong head-tail instabilities in individual beam bunches.

Tune modulation can also be explicitly introduced by modulating the power
supply currents of a set of quadrupole correctors. A modulated quadrupole error
of strength Aby at alocation with horizontal beta function Bz (quad) will modulate

the horizontal tune vis. Equation (2.22):
Aby B(quad)
9= ———
4

The vertical tune is modulated with an opposite sign (completely out of phase from

. (4.2)

the horizontal) using the corresponding beta function. Discussion of controlled
modulation for the E778 tune modulation experiment is deferred until Chapter 5.

Quadrupole modulation not only changes the tune of the machine but also
modulates the beta functions around the ring. Quantitatively the amplitude b(s)

of this beta modulation,
B = BL+b(s)sin(27Qrt)] (4.3)

is given by Sands (Sands 1970, eq. [2.105]):

= Aﬂ(S) = 27Tq COS S) — ua — 4T
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The only longitudinal position dependence is in the cosine; this perturbation caus-
es a so-called “beta wave” around the accelerator with a cusp at the location of the
quadrupole error. Examination of the first-order nonlinear Hamiltonians Equa-
tions (3.6) and (3.7) shows that, for the single resonance term cos(Nv) selected
by N-turn summation, the final effect of beta modulation is, to first order in b, a

modulation of the resonance strength:

Nb
Vo = VN |1+ 7 Sin(?ﬂ'QMt) . (45)

The beta modulation strength in Equation (4.4) is expressed in terms of the
tune shift for the quadrupole to compare the relative effectiveness of tune and
beta modulation in detrapping particles captured within nonlinear resonance is-
lands. For a single quadrupole error the maximum beta modulation amplitude b
is roughly an order of magnitude larger than the corresponding tune modulation
depth ¢; for a set of modulated quadrupoles distributed in phase ¥(s) (as used
in E778) interference between beta waves from individual quadrupoles makes this
ratio about two to three times smaller.

A similar, though not equivalent, modulation is produced by synchrotron oscil-
lations of a particle with nonzero fractional momentum offset 6. These modulate
the magetic rigidity |Bp| — |Bp|[l 4 6 sin(27Q pt)], effectively modulating the
normalized multipole strengths. For 6 < 1, always the case in realistic operations,

by — by[1 — §sin(27Q )] (4.6)

to first order in 6. This modulates the resonance strength Vi differently than beta
modulation does, since here Vy is proportional to b, in a first-order nonlinear
analysis:

VN — VN[l — (Ssin(QFQMt)] . (47)

So b = 26/N for beta modulation induced by synchrotron oscillations.
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4.2 THE N-TURN HAMILTONIAN FOR
TUNE MODULATED ONE-DIMENSIONAL RESONANCES

We begin with the one-turn one-dimensional Hamiltonian of Equation (3.13),

including tune modulation:
1
Hi(, J;t) =27Q0J + §aJ2 + Vi JN/? cos(N) + 2mqJ sin(2rQust) . (4.8)

The single resonance term is the only one kept because all others, not of interest
in an isolated resonance model, are suppressed in the summation used to produce
an N-turn Hamiltonian. The tune is again assumed to be near the resonant tune,
Qo = % + 6¢g where 6g < % We shall consider only tune modulation frequen-
cies @y much smaller than 1/N so the tune is adiabatically changing over these
N turns, and tune modulation depths ¢ & §g. Real sources of tune modulation
described in the previous section agree with these limits; much larger tune modu-
lation strengths prohibit any regular motion with strongly driven resonances. The
one-turn Hamiltonian is now summed over N turns as in the previous chapter to

give, to first order in the small strengths o, Vv and ¢:

Hn(,J;T) =27NégJ +2rNqJ sin(2rNQuT) + %a]z (4.9)

+ NVNJN/2 cos(Nv) .

The N-turn Hamiltonian can exhibit fixed points as before for certain sections
of the modulation parameter space (¢, @nr). Solving the equation J = 0 for the
fixed point phases gives ¢, = 0,7/N,...(2N — 1)x/N. Similarly, solving b =0
for the fixed point actions gives

0=2mbg + 27rqsin(2r NQuT) + aJyp ,

2 4.10
AN qQar cos(2nNQuyT) . ( )

Jpp= -
Ip o

We transform the coordinates to the small action-angle coordinates (6,I), ex-

panded around a stable fixed point, via the linear transformations of the previous
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chapter —
6= —+6
N (4.11)
J = pr(T) + 1.

This transformation also changes the Hamiltonian because it is nonautonomous,

or time-dependent:
Hy(p, J;T) = Hy(6,L;T) + 6.7, . (4.12)

Performing this change of coordinates produces a driven pendulum Hamiltonian,

A2 N

[a%

N
Hn(6,I) = EQIZ + .7\71/]\7,]){\;/2 cos(NO) — qQ 0 cos(2rNQyT), (4.13)

The equation of motion of the angle variable 8 becomes that of a pendulum, driven

at the modulation frequency Q) ;:

6 = —N(27Q1)? sin(N8) — 4AN*72¢Qps cos(2nNQuyT) . (4.14)

This form agrees with others previously published (Peggs 1988, Chen 1990) if the
timescale is changed back to single turns via T — ¢/N.
When the equation of motion for the angle 8 is linearized, it can be solved easily

and explicitly for 8(T). The solution is found to be

oT) = L Qs cos(2rQuNT) . (4.15)
Qm Q3 — QF

From the Hamiltonian we can also get the solution for the action I as a function
of T, since 6 ~ Nal:

2rq Q%

=g a

sin(2rQuNT) . (4.16)

4.3 STRUCTURE OF THE (¢, Q) PARAMETER SPACE

From the structure of the driven pendulum equation of motion, it is natural to

investigate the structure of the (¢, @) modulation parameter space. Rescaling
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the time by T — T'/Q1 in Equation (4.14) shows that the natural scaling for both
g and Qs is @1, since only the ratios ¢/Q1 and Qnr/Q1 appear under this scale
change:

§ = —N(2r)? sin(N) — 4N?r? (é) (%—J‘Q cos [27TN (%‘f) T] . (417)

It is interesting to look at three extremes of the parameter space: when QJy; < Q1
(adiabatic modulation), @ > Q1 (fast modulation) and Qs ~ Q1 (resonance).

First consider the case of adiabatic tune modulation, where the modulation
tune is much smaller than the island tune, or many particle oscillations take place
around the fixed point with every modulation cycle. Here we can consider the
tune to be changing linearly with a small rate of Q = d@Q/dT. The transformed

Hamiltonian of Equation (4.13) is now given by
N 2 N/2 :
Hn(0,I;T) = EOéI + NVn Ty, cos(NO) +27QTI . (4.18)

The dependence on QT may be relegated to second order with the generating
function

_ Y s
GUI6:T) = —16+ 2% 1g (4.19)
«
which gives the transformations I = I—27rQT/oz and § = §. The new Hamiltonian
is now no longer periodic in the angle variable 8, for it becomes

N _ 9270 -
Hy(0,1) = Eaﬁ + NV J /% cos(N) + Qg (4.20)

[a%

This Hamiltonian ezplicitly modulates the pendulum amplitude I, as can be seen

by the Hamilton’s equation for it’s rate of change:

OHyN

27TQ
0 T

[a%

p N . —
I=— = N2V J /% sin(N6) (4.21)

Now there are only angle fixed points if we can find 8¢, such that I[=0. Noting

that the maximum value of the rate of change of the tune is Qmaz = 27NqQur,
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we find the constraint

1

q Qu
SN

Q1 Qr

for adiabatic stability over the entire modulation sweep. As has been previously

(4.22)

mentioned (Peggs 1988, Chao and Month 1974), this is an analogue to RF buck-
et shrinkage during particle acceleration. The above procedure is equivalent to
transforming the original N-turn Hamiltonian (4.9) via a generating function that

modulates only the action (or amplitude),
G(¢7 I7 T) = [JfP(T) + I] [¢ - kresﬂ-] ) (423)

hence this region is dominated by “amplitude modulation”, where the modulation
predominantly modulates island amplitudes instead of island phases as mentioned
above.

Second, consider the “fast modulation” case, where Qs > (J1. As might be ex-
pected from the above comments, this region is dominated by “phase modulation.”
Consider transforming to the phase-modulated fixed points with application of the

generating function
Go(h, ;T) = [gp + 1[0 — b p(T)] (4.24)
to the N-turn Hamiltonian (4.9) — this produces
Hy(8,1) = %aﬁ + 27Nl sin(2rNQuT) + NV J /2 cos(N8) . (4.25)

Here the phase is explicitly modulated by the term linear in the action I, as

expected. Applying yet another generating function,

Go(0,1;T) = 0T + —L— cos(2rNQuT)I , (4.26)
Qm
shifts the modulation inside the angle dependence:

Hn(0,I;T) = %a[z + .7\71/]\7,]){\;/2 cos | N6 + g—q cos(2rQuNT)| . (4.27)
M
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The cosine term can be expanded in Bessel functions J,, and harmonics via a

variant of the Jacobi-Anger expansion of a plane wave,

cos(A + BcosC) Z Jm(B)cos(A+ mC +mn/2), (4.28)

to produce a new Hamiltonian that has an infinite number of resonance terms:
__ N
Hy(8.1) = Sal’ + NVy I Z T ( ) cos(NO+2rmNQuT +mn/2) .
(4.29)
Examine a particle at non-zero I in the above Hamiltonian; there is a family of
actions I; (parameterized by an integer /) where a particle has a net phase advance

of zero (modulo 1) over NTy; turns, or a tune of

M
= 4.30
Q="+ - Qu (4:30)
The action that corresponds to this tune is I; = % Now we can perform

a sum over T3y N-turn periods near this tune if not much happens in that time
(if @um < Q1) to find a new Hamiltonian that is autonomous over discrete time
intervals of Ty - N turns. When this sum is performed, only one resonance (m =
—[) remains since the others are suppressed in a similar manner to the resonance

suppression before, and we find the Hamiltonian for (T - N )-turn motion:

_ N -~ -~
Hy 1y, (6.1) = - Tya(I — I)? + NVNJN/zTMJ (

Ngq

QM) cos(N8). (4.31)

Note that this Hamiltonian contains a sideband resonance for every integer [;
however the Bessel functions suppress the amplitudes of these sideband resonance
strengths for large [ since J_; ~ 0 for Nq¢/Qun < |l{|. For the unsuppressed

sidebands the Bessel functions can be approximated by

Vo) (20 (Nq E_z> or 1] < 4
- (sz) (qu> Ou © ) ° IZI<QM (4.32)
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with rms values \/Qar/Nmq. This means that the [ = 1 sideband suppressed and
no sidebands are driven strongly if

q< QTM . (4.33)

Generally the k" sideband is suppressed if ¢ < kQas/N.

From the Chirikov overlap criterion (Chirikov 1979), sideband resonances over-
lap and local stochasticity results if 21w > I, where Iy is the sideband reso-
nance island action half-width and I,., is the action separation of the fixed points
of neighboring sidebands. From the above formula for I;, it is apparent that
Isep = 27Q 1 /Na. The island width must be calculated from Hamiltonian con-
tour considerations and Equation (4.31) in the same fashion as the unperturbed

primary resonance width calculation in Chapter 3; here it is found to be
N/2

Vi 12
Iy = 2 [M J_ (&)]
a Qum

for each sideband. Combining these with the overlap criterion and the definition

4.34
Nrq (4.34)

[a%

1/2
VN'])]“\]ZN] |:QM:|1/4

of @ for the primary resonance (Equation [3.21]), sidebands overlap and chaos
begins when

256 Qf > N7mqQ3, . (4.35)

Even though separatrices are destroyed and sidebands overlap when this condition
is obeyed, the central regions of the primary resonances can still be locally stable
for small enough @), where adiabatic trapping takes over as in the previous
discussion.

Lastly consider the nearly resonant case, Qys & (1, as described approximately
by the linearized equations of motion. Equations (4.15) and (4.16) represent
locally phase-locked motion only when the linearization of this motion around

the fixed point in phase is a good approximation. This approximation fails when
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sin(N6) becomes strongly nonlinear — that is, when |N6| ~ 1. This gives a weak

constraint for bounded motion as

qQm

g7 < 1/N . (4.36)

This constraint can be improved by including the next order (nonlinear) terms
in the expansion of the driven pendulum equation (Tsironis 1990) but it is satis-
factory in the resonant region where Q3 ~ ()1 and large motion is expected to
become unbounded.

Summarizing, there are four basic constraints in the parameter space that divide
the (¢, @ ar) plane into four distinct regions. Near the driven pendulum resonance

(Qu ~ Q1), chaos occurs when

qQm

2| 1/N . (4.37)

In the adiabatic regime (@ < Q1), chaos occurs when

Qr

7 (4.38)

lg@nr| >

below this threshold we have adiabatic stability of the fixed point and amplitude
modulation dominates. In the fast-modulation approximation (Qur > Q1) the
k" sideband appears when ¢ > |k|Qn/N. The first sideband off the primary
resonance is then of non-negligible size when

Q.

T (4.39)

below this threshold there is stability with fast “phase modulation”. The side-

bands overlap and produce chaos when

256 Qf > NmqQ3, . (4.40)
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Figure 4.1: The (¢, Q) parameter plane for N = 5, showing four dis-
tinct phases of motion. Local motion near the fixed point of the 5@,
resonance is stable (i.e. phase-locked, or resonant) for all regions except

“Chaos”.

These regions of the tune modulation parameter plane (¢, Q) and the lines sep-
arating them are shown in Figure (4.1).

The only tune modulation parameters that create detrapping of particles cir-
cling near the centers of nonlinear resonance islands are in the “Chaos” region of
this figure, where there is expected to be no regular motion at all within the reso-
nance island chain. It is important to note that with the presence of detuning and
for purely one-dimensional motion, this chaotic region is localized. That is, the

chaotic motion is restricted to a “thick layer” of stochasticity, covering the extent
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of the overlapping sidebands created by the modulation. The presence of such
a region does not necessarily prohibit stable motion at larger amplitudes if the
detuning that is present is sufficiently strong to pull the tunes of particles at these
amplitudes to nonresonant values. This is a contrast to “thin-layer” stochasticity,
which is created by the overlap of thinner higher-order resonances in the vicinity
of perturbed separatrices. For our purposes such thin-layer stochasticity can be
ignored in this discussion, since the phase space extent of such regions is a great
deal smaller than the extent of the chaotic band created by tune modulation.

The phase space of particles in each area of the tune modulation parameter
plane is shown in Figure (4.2), plotted every modulation period. Shown on top
for reference is the phase space of unperturbed particles, with Q1 = 6.1 - 1073
for the primary isolated N = 5 resonance shown. This is a nominally realistic
value for (1, also similar to values found for small nonlinear strengths in tracking
in the last chapter. Note that motion in the amplitude modulation and phase
modulation regions is essentially indistinguishable from the unperturbed phase
space and small-amplitude nonresonant motion is undisturbed in all cases. In the
lower right figure the £ = 1 sidebands can be seen on either side of the primary
resonance, with stochasticity already beginning to form where the separatrices of
the resonances overlap.

Alternative schemes to investigating the stability of the driven pendulum equa-
tion of motion (4.14) have been proposed which do not linearize the pendulum
completely but including the first nonlinear terms in the expansion of the sine
(Tsironis, Peggs and Chen 1990). Such an analysis predicts stability boundaries
of the Mathieu equation, similar to the discussion of beta modulation in the next
section. However these resonances are expected to be significantly weaker than
the main driven pendulum resonance because they are found within the nonlinear

response of the pendulum system.
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Figure 4.2: Phase spaces at various points in the (¢, @) tune modula-
tion parameter plane as produced by the simulation program OdTrack
for N = 5 resonance islands. Here the action a = \/ﬁ is plotted a-
gainst particle phase, for Q; = 6.08 - 1073. From the top and left to
right, the figures are described as: (a) The unperturbed phase space at
g = Qu = 0. (b) Amplitude modulation with ¢ = Q» = Q1/10. (¢)
Phase modulation with ¢ = Q1/10, Q@3 = 10Q1. (d) A thick stochastic
band is produced in the chaos region with ¢ = Q1/2, Qs = Q1. (e) The
first sideband (k = 1) appear at ¢ = 2Q1/5, Qum = Q1/3.
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4.4 THE N-TURN HAMILTONIAN FOR
BETA MODULATED 1-DIMENSIONAL RESONANCES

Now consider the one-turn one-dimensional Hamiltonian of Equation (3.13),
representing the motion of a particle trapped in a nonlinear resonance island

influenced by a small beta modulation (4.5):
1 Nb
Hi(yp, Jit) =27QJ + §aJ2 + Vi JN/? cos(Nv) |1+ <> sin(2rQart)| . (4.41)
With the assumption that the tune is near an N () resonance as before, quantified

by stating that @ = M/N + ég, we can now go through the N-turn summing

process to arrive at an N-turn version of this Hamiltonian:

N
Hx(¢, J;T) =27NégJ + Eaﬁ

N (4.42)
+ NVN TN/ cos(Ny) |1+ - sn(2rQu NT)

The equations of motion given by this Hamiltonian show that neither the fixed
point action nor phase are modulated by beta modulation — it is the depth of the
oscillator well, or resonance strength, which is being modulated. Transforming
to the coordinates (6,1) is then not time-dependent, and can be accomplished
using the linear canonical transformation of Equation (3.17). The Hamiltonian
after this transformation has the form of a parametrically modulated nonlinear

pendulum,
N Nb
Hy(0.1:T) = Sal” + NV /2 cos(N§) |1+ - sin(2rQuNT)| . (4.43)

Comparison of the relative effectiveness of tune modulation and beta modulation
in detrapping particles within resonance islands and destroying persistent signals
is more straightforward if we compare the respective equations of motion. The
equation of motion for the angle of this oscillator in all ranges of modulation

strength b and frequency Qs is then

6 = —N(27Qr)*sin(N6) |1 + N7b sin(2rQuNT)| . (4.44)
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The parametric form of the equation of motion is expected in the case of beta
modulation because the strength of the resonance is being modulated as mentioned
above, thus modulating both the island tune )1 and the island width. The fixed
point phases are not expected to change with beta modulation to any order, as
can be seen by examining the above equation of motion when 6 = 0. From

Equation (4.41) the equation for the fixed point action J¢, is

N

N —2 Nb
0=27Q + aJsp + EVNJ = |1+ <> sin(2rQuNT)| (4.45)

indicating that this action is modulated in some complicated weak way.

The linearized form of Equation (4.44) is called the Mathieu equation. Condi-
tions for the stability of such a parametrically driven oscillator have been described
extensively in classical mechanics literature (Landau and Lifshitz 1975) and vari-
ous tables of stability curves have been produced (Abromowitz and Stegun 1965,
McLachlan 1951). The above form can be transformed to the canonical form cited
in the literature,

d*6

e +[a —2fsin(22)]6 =0, (4.46)

2N\ Q1

Note that the modulation frequency still scales naturally with the island frequency,

2
noting the equivalences z = N7Qur, (Qua/Q1) = 2/@1/2, and b = L <Q_M> )

but the modulation strength b usurprisingly does not because it is not a natural

frequency domain variable. For values of b < 1, resonances exist for the beta-

modulated parametric oscillator when

21
k

Q) ps(resonant) = (4.47)

where k is an positive integer. The strength of these resonances increases with
increasing modulation strength b, but decreases with increasing k as b%; the sub-

harmonic resonance at k =1 (or Q3 = 2Q)1) is the strongest.
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Figure 4.3: The N = 5 modulation parameter plane (b, Qr/Qr) for
beta function modulation, showing approximate widths for resonances
of orders k£ = 1 to k& = 5. Small oscillation stability is predicted below
each set of resonance lines.

The k& =1 through k = 5 Mathieu resonances are shown in Figure (4.3), where
motion within a resonance is expected to lead to instability of motion very close
to the fixed point and subsequent detrapping. The k = 1 subharmonic resonance
is evident at Qs = 2Q)1. All of the resonance widths typically grow non-negligible
at a beta modulation depth of approximately b ~ 0.10. Higher order resonances
are present but not shown for the sake of clarity. Note that in this stability

8

diagram the vertical scale is b = %. Comparison of this figure to Figure (4.1)

and recalling comments about the relative strengths of beta modulation and tune
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modulation induced by a quadrupole error shows that tune modulation is on the
order of 1/(10Q1) times more effective than beta modulation in destroying local

regular motion near the center of a nonlinear resonance island.

4.5 COMPARING HAMILTONIAN RESULTS TO SIMULATION

The entirety of this chapter concerns the phase-locking “stability” of particles
trapped within nonlinear resonance islands subject to tune modulation and beta
modulation. It is quite tedious to examine phase-space plots by hand for a variety
of modulation conditions to determine the stability of the fixed-points, and so an
algorithm was developed that allows fast and efficient location of fixed points in
the two-dimensional map of the octupole-decapole lattice. This algorithm is quite
easily extendible to any two-dimensional map.

Consider a fixed point in the phase space (x,2') at the location (z,z"). If this
fixed point is elliptically stable a particle circulating around it will experience the

linear transformation from initial coordinates (z,2') to (z + Axy, 2" + Axl)
x+Axy\ _ [ T A B r— T
(ran)-(2)+ (4 B)(22). s

x+Ax1\ [ Ar —Ax + B2 — B’ + % (4.49)
'+ Az ] T \Cae—Cx+ D2’ —Dz' +2' ) - ‘

or

The transformation matrix has the form of a rotation matrix if the motion
around the fixed point is perfectly circular. For a more general elliptical fixed
point, the trace of the rotation matrix is twice the cosine of the the total phase
advance induced by the mapping; if this phase advance is denoted 27T, where
T is the number of turns tracked to produce one iteration of this map in Odfp,

then

A+ D

cos(2rT) = 5

(4.50)
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This determines ()1 within an aliasing factor from the cosine once the trans-
formation matrix elements are known, and this aliasing factor can be found by
comparison of this ()1 to the theoretically predicted value.

Equation (4.49) only gives two constraints to find six unknowns, the fixed point
location and the elements of the transformation matrix. Four other constraints are
given by launching two more particles through the same mapping, offset by small
amounts éx and dz' in the x and 2z’ directions respectively. The second particle

experiences the linear transformation from (x + éx,2') to (@ + Axg, 2’ + Axl):

x4+ Axy \ [ Axr — Az + B2' — Bx' + 1 4 Adzx (4.51)
'+ Az, ] T \Coe—Cx+ D2’ — D' +3 +Céx |~ ‘

Subtracting the mapping equations for the first particle from those of the second

gives equations for the matrix elements A and C"

_ Awxg — Axy C- Azl — Axq

A
bx bx

(4.52)

Repeating the same process for a particle mapped from coordinates (z, 2" + 6z')

to (v + Awxs, 2’ + Azl) gives the other two matrix elements:

Az — Az D Azl — Az

B
ox! ox!

(4.53)

Once the transformation matrix is known, Equation (4.49) can be inverted to

find the fixed-points of the mapping:

()= B [(ran) - (2 5)(5)] o

This implies a matrix inversion — if this matrix inversion fails, then the initial
conditions were such that the three particles were proceeding essentially linearly
and there is no fixed point nearby.

This method has several advantages that make it extremely useful. It is ex-

tremely fast, requiring only three iteration about the local fixed point to assess
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local motion, as opposed to minmax fixed-point location techniques where many
hundreds of iterations must be performed. It is also very efficient and accurate;
only two or three iterations of this procedure were required to find the fixed point
of a particle even launched near the separatrix. And finally, it is very robust; any-
where in the two-dimesional phase space where there is local curvature created
by the presence of a resonance island, this method will iterate. If such curvature
is produced by proximity of a stable fixed point, the method will converge; con-
versely, if such curvature is produced by proximity of an unstable fixed point, this
method will rapidly diverge.

The program Odfp is used to monitor local stability of a 5@, resonance island
fixed point in the octupole-decapole lattice. For a given modulation tune @)y,
the fixed point was found for zero modulation strength. The modulation strength
was then gradually increased and the local fixed point was again located, and
the process was repeated until local motion was so distorted by the perturbation
that no fixed point was found. This scan of modulation strengths was repeated
for many tune modulation frequencies, and the points in the parameter space
(¢, Qnr) where the fixed point disappeared were plotted. Consecutive iterations
with a variety of modulation strengths makes it possible to extrapolate fixed point
locations through vertically thin regions of instability in some cases. However, for
large regions of chaos merely the edges can be examined, as the strongly chaotic
motion precludes any chance of finding fixed points.

The results of such a set of simulations for the case of tune modulation, with
beta modulation explicitly absent, are shown in Figure (4.4). A point is plotted
for each (¢, Qr) point where the fixed point was not found (or when local motion
around the fixed point was not phase locked). The scan begins at Qs = 0.1 Qr,
corresponding to a modulation period of approximately 1650 turns — searching

further into the low-frequency adiabatic territory is constrained by available com-
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Figure 4.4: The (¢q,Qn) parameter plane for N = 5, showing fixed
point stability for a run of the tracking program Odfp. For this lattice
by = 0.010, by = 0.005, Q1 = 0.0061 and 1/Q1 ~ 165 turns. Lines from

Figure (4.1) are shown for comparison to theory.

puter time and shows highly erratic behavior of many closely spaced resonances as
described in the next paragraph. The frequency scan ends at ()3; = 10 ()1, where
the modulation period is approximately 16 turns and the approximation of mod-
ulation adiabaticity with respect to the turn time within the machine, Qs < 1,
begins to break down.

This figure shows the dominant 3y = ()1 resonance, but also indicates that
the stability border around this resonance is asymmetric. The low-frequency side

of this resonance curves to low frequencies, and qualitatively agrees with the pre-
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Figure 4.5: The (b, Qs ) parameter plane for N = 5, showing fixed point
stability for a run of the tracking program Odfp. Tracking conditions
were the same as those in Figure (4.4), and stability curves from Fig-
ure (4.2) are shown as solid lines for comparison.

dictions of tune modulation stability. However, the high-frequency side of this
resonance appears almost vertical — at modulation frequencies just above the
island tune, stability is greatly enhanced. This asymmetry is probably due to
the higher order terms that have been neglected; indeed, the parametric oscillator
displays such an asymmetry at this resonance (Landau and Lifshitz 1975). The
presence of a cascade of thinner higher-order resonances at low frequencies, each
dipping down at precisely the harmonics corresponding to Mathieu resonances,

and the crescent-shaped instability region between @y = @1 and the subhar-
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monic resonance @y = 2@ also indicate that the nonlinear driven pendulum
equation of motion (4.14) has weak instabilities defined by the Mathieu equation,
as predicted elsewhere (Tsironis, Peggs and Chen 1990). At higher frequencies
stability is shown up to large modulation strengths, on the order of values that
would make the assumption that the tune modulation depth ¢ is less than the
difference between the base tune and the resonant tune false. There is indeed a
large stable region in the area of “stable sidebands”.

For beta function modulation a similar set of simulations were performed, with
tune modulation absent, and the results of these simulations are shown in Fig-
ure (4.5). Resonance locations are exactly the same as predicted, though the
behavior of tracking stability is somewhat different than that of the Mathieu pre-
dictions. This is quite reasonable because an approximation was made that b < 1
in the derivation of the Mathieu form for beta modulation, and so the predicted
stability is expected to hold only for modulation levels much less than the be-
ta function itself. Comparing the vertical scales between Figures (4.4) and (4.5)
again shows that, for tune and beta modulation created by the same strength
quadrupole ripple, tune modulation destroys the phase localization of resonance

islands much more effectively.



