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MePAS Accelerator Physics Syllabus 

  1-2: Wednesday 
  Relativity/EM review, coordinates, cyclotrons 
  Weak focusing, transport matrices, dipole magnets, dispersion 

  3: Thursday 
  Edge focusing, quadrupoles, accelerator lattices, start FODO 

  4: Friday 
  Periodic lattices, FODO optics, emittance, phase space 

  5: Saturday 
  Insertions, beta functions, tunes, dispersion, chromaticity 

  6: Monday 
  Dispersion suppression, light source optics (DBA, TBA, TME) 

  7: Tuesday 
  (Nonlinear dynamics), Putting it all together 
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Parameterizing Particle Motion: Approximations 

  We have specified a coordinate system and 
made a few reasonable approximations: 
0) No local currents (beam in a near-vacuum) 
1)  Paraxial approximation: 

2) Perturbative coordinates: 

3) Transverse linear B field:  

4) Negligible E field: 

coordinate system 
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Review 

  Drift transport matrix: 

  Dipole transport matrix without focusing: 

  Dipole horizontal transport matrix including focusing and 
dispersion: 
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Focusing Without Bending 

  Quadrupole magnets have            but 
  No dipole field: design trajectory is straight 

  Like taking              in our previous analysis 
  This is one reason why we changed our parameterizations 

from  

horizontal dipole vertical dipole “normal” quadrupole “skew” quadrupole 
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Quadrupole Equations of Motion 

  This is truly a simple harmonic oscillator when K is 
constant: for a quadrupole of length L 
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Swap places when K goes to -K 
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Thin Quadrupoles 

  In most accelerator uses, we can take L->0 with KL constant 
Use small-angle approximation to rewrite as a “thin” quadrupole 

This is just like a lens in classical optics with a focal length  
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Thin quadrupole transport matrix 
Swap places when K goes to -K 
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Picturing Drift and Quadrupole Motion 

KL=0.5 m-1, f=2m KL=0.1 m-1, f=20m 

KL=20 m-1, f=0.05m KL=-0.1 m-1, f=-20m 
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Picturing Drift and Quadrupole Motion 

KL=0.5 m-1, f=2m KL=0.1 m-1, f=20m 

KL=20 m-1, f=0.05m KL=-0.1 m-1, f=-20m 

Thin Quadrupole Approximations 
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Dipole Edge Focusing 

  Quadrupoles are not the only place we get focusing! 
  Recall our 3x3 sector dipole matrix 

Vertical motion is just a drift of length 

  But this magnet is curved and therefore not easy to build 
In particular, the ends are “tilted” to be     to design trajectory  

L = ρθ

⊥
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Sector and Rectangular Bends 

  Sector bend (sbend) 
  Beam design entry/exit angles are ⊥ to end faces 

  Simpler to conceptualize, but harder to build 
  Rectangular bend (rbend) 

  Beam design entry/exit angles are half of bend angle 

  Easier to build, but must include effects of edge focusing 
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Dipole End Angles 

  Different transverse positions see different B field! 
  Particles displaced by +x see B field later than design 
  Particles displaced by –x see B field earlier than design 

Design trajectory particle 

-x displaced particle 
enters B field earlier 
than design trajectory 
particle 

+x displaced particle 
enters B field later 
than design trajectory 
particle 
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Dipole End Angles 

  We treat general case of symmetric dipole end angles 
  Superposition: looks like wedges on end of sector dipole 
  Rectangular bends are a special case 
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Kick from a Thin Wedge 

  The edge focusing calculation requires the kick from 
a thin wedge 

What is L? (distance in wedge) 

  Quadrupole-like defocusing term, linear in position 
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Dipole Matrix with Ends 

  The matrix of a dipole with thick ends is then 

  Rectangular bend is special case where α=θ/2 
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What About Vertical Edge Focusing? 

  Field lines go from –y to +y for a 
positively charged particle 
  Bx <0 for y>0; Bx>0 for y<0 

•  Net focusing! 
  Field goes like sin(α) 

•  get cos(α) from integral length 
  Quadrupole-like focusing  

N 

S 

Side view 
Overhead 
view, α>0 

∆y� =
(−Bxy sinα/l)(l/ cosα)

(Bρ)
= − tanα

ρ
y
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========== Almost There ========== 
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Matrix Example: Strong Focusing 

  Consider a doublet of thin quadrupoles separated by drift L 

There is net focusing given by this alternating gradient system 
A fundamental point of optics, and of accelerator strong focusing 
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Strong Focusing: Another View 

For this to be focusing, x’ must have opposite sign of x 

Equal strength doublet is net focusing under condition 
that each lens’s focal length is greater than distance 
between them 
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Strong Focusing Homework 

  The previous argument also works when the defocusing 
quadrupole comes before the focusing quadrupole 
  Homework: Calculate the net focusing condition for this system 
  Since quadrupoles focus in one plane and defocus in the other, 

alternating quadrupoles continuously produces a system that is 
overall net focusing and stable 

fF

fD

Horizontal 

Vertical 

FODO lattice: Periodic! F    O    D    O 
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More Math: Hill’s Equation 

  Let’s go back to our equations of motion for 

What happens when we let the focusing K vary with s? 
Also assume K is periodic in s with some periodicity C 

This periodicity can be one revolution around the accelerator or 
as small as one repeated “cell” of the layout 

  (Such as a FODO cell in the previous slide) 

The simple harmonic oscillator equation with a 
 periodically varying spring constant K(s) is 
 known as Hill’s Equation 
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Hill’s Equation Solution Ansatz 

  Solution is a quasi-periodic harmonic oscillator 

where w(s) is periodic in C but the phase φ is not!! 
Substitute this educated guess (“ansatz”) to find 

For          and         to be independent of     , coefficients 
of sin and cos terms must vanish identically   
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Courant-Snyder Parameters 

  Notice that in both equations               so we can scale this 
out and define a new set of functions, Courant-Snyder 
Parameters or Twiss Parameters  
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Towards The Matrix Solution 

  What is the matrix for this Hill’s Equation solution? 

This all looks pretty familiar and pretty tedious… 
We have done this many times so we skip to the solution 
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Interesting Observations 

         is independent of s: betatron phase advance again 
  Determinant of matrix M is still 1! (Check!) 
  Still looks like a rotation and some scaling 
  M can be written down in a beautiful and deep way 

and remember 
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========== Once Again  ========== 


