Introduction to Accelerator Physics 2011 Mexican Particle Accelerator School

Lecture 3/7: Quadrupoles, Dipole Edge
Focusing, Periodic Motion, Lattice Functions

Todd Satogata (Jefferson Lab)
satogata@jlab.org
http://www.toddsatogata.net/2011-MePAS

Thursday, September 29, 2011

MePAS Accelerator Physics Syllabus

- 1-2: Wednesday
- Relativity/EM review, coordinates, cyclotrons
- Weak focusing, transport matrices, dipole magnets, dispersion
- 3: Thursday
- Edge focusing, quadrupoles, accelerator lattices, start FODO
- 4: Friday
- Periodic lattices, FODO optics, emittance, phase space
- 5: Saturday
- Insertions, beta functions, tunes, dispersion, chromaticity
- 6: Monday
- Dispersion suppression, light source optics (DBA, TBA, TME)
- 7: Tuesday
- (Nonlinear dynamics), Putting it all together

Parameterizing Particle Motion: Approximations

- We have specified a coordinate system and made a few reasonable approximations:

0) No local currents (beam in a near-vacuum)
1) Paraxial approximation:

$$
x^{\prime}, y^{\prime} \ll 1 \quad \text { or } \quad p_{x}, p_{y} \ll p_{s}
$$

2) Perturbative coordinates:

$$
x, y \ll \rho
$$

3) Transverse linear B field:

$$
\vec{B}=B_{0} \hat{y}+(x \hat{y}+y \hat{x})\left(\frac{\partial B_{y}}{\partial x}\right)
$$

4) Negligible E field:

$$
\gamma \approx \text { constant }
$$

Review

- Drift transport matrix: $B=0$

$$
\binom{x(s)}{x^{\prime}(s)}=\left(\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right)\binom{x_{0}}{x_{0}^{\prime}}
$$

- Dipole transport matrix without focusing: $B=B_{0} \hat{y}$

$$
\left(\begin{array}{c}
x(s) \\
x^{\prime}(s) \\
y(s) \\
y^{\prime}(s)
\end{array}\right)=\left(\begin{array}{cccc}
\cos \theta & \rho \sin \theta & 0 & 0 \\
-\frac{1}{\rho} \sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & \rho \theta \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

- Dipole horizontal transport matrix including focusing and dispersion:

$$
\left(\begin{array}{l}
x(\theta) \\
x^{\prime}(\theta) \\
\delta(\theta)
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\theta \sqrt{1-n}) & \frac{\rho}{\sqrt{1-n}} \sin (\theta \sqrt{1-n}) & \frac{\rho}{1-n}[1-\cos (\theta \sqrt{1-n})] \\
-\frac{\sqrt{1-n}}{\rho} \sin (\theta \sqrt{1-n}) & \cos (\theta \sqrt{1-n}) & \frac{1}{\sqrt{1-n}} \sin (\theta \sqrt{1-n}) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right)
$$

Focusing Without Bending

- Quadrupole magnets have $B_{0}=0$ but $\left(\frac{\partial B_{y}}{\partial x}\right) \neq 0$
- No dipole field: design trajectory is straight
- Like taking $\rho \rightarrow \infty$ in our previous analysis
- This is one reason why we changed our parameterizations from $\frac{d x}{d \theta} \rightarrow \frac{d x}{d s} \equiv x^{\prime}$
horizontal dipole

vertical dipole

"normal" quadrupole

Quadrupole Equations of Motion

$$
\begin{array}{r}
\frac{d^{2} x}{d \theta^{2}}-n x=0 \quad \frac{d^{2} y}{d \theta^{2}}+n y=0 \quad n \equiv-\frac{\rho}{B_{0}}\left(\frac{\partial B_{y}}{\partial x}\right) \\
\frac{d}{d \theta}=\frac{1}{R} \frac{d}{d s} \quad \Rightarrow \quad x^{\prime \prime}+\frac{1}{(B \rho)}\left(\frac{\partial B_{y}}{\partial x}\right) x=0 \quad y^{\prime \prime}-\frac{1}{(B \rho)}\left(\frac{\partial B_{y}}{\partial x}\right) y=0 \\
x^{\prime \prime}+K x=0 \quad y^{\prime \prime}-K y=0 \quad K \equiv \frac{1}{(B \rho)}\left(\frac{\partial B_{y}}{\partial x}\right) \quad[K]=[\text { length }]^{-2}
\end{array}
$$

- This is truly a simple harmonic oscillator when K is constant: for a quadrupole of length L

Thick quadrupole transport matrix
Swap places when K goes to -K

Thin Quadrupoles

- In most accelerator uses, we can take L->0 with KL constant Use small-angle approximation to rewrite as a "thin" quadrupole

$$
\left(\begin{array}{l}
x(L) \\
x^{\prime}(L) \\
y(L) \\
y^{\prime}(L)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-K L & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & K L & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

This is just like a lens in classical optics with a focal length $f \equiv \frac{1}{K L}$

$$
\left(\begin{array}{l}
x(L) \\
x^{\prime}(L) \\
y(L) \\
y^{\prime}(L)
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / f & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 1 / f & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
y_{0} \\
y_{0}^{\prime}
\end{array}\right)
$$

Thin quadrupole transport matrix

 Swap places when K goes to -K
Picturing Drift and Quadrupole Motion

Picturing Drift and Quadrupole Motion

Thin Quadrupole Approximations

Dipole Edge Focusing

- Quadrupoles are not the only place we get focusing!
- Recall our 3×3 sector dipole matrix

Vertical motion is just a drift of length $L=\rho \theta$

$$
\begin{gathered}
\left(\begin{array}{c}
x(\theta) \\
x^{\prime}(\theta) \\
\delta(\theta)
\end{array}\right)=\left(\begin{array}{ccc}
\cos (\theta \sqrt{1-n}) & \frac{\rho}{\sqrt{1-n}} \sin (\theta \sqrt{1-n}) & \frac{\rho}{1-n}[1-\cos (\theta \sqrt{1-n})] \\
-\frac{\sqrt{1-n}}{\rho} \sin (\theta \sqrt{1-n}) & \cos (\theta \sqrt{1-n}) & \frac{1}{\sqrt{1-n}} \sin (\theta \sqrt{1-n}) \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{0}^{\prime} \\
\delta_{0}
\end{array}\right) \\
n=0 \Rightarrow \quad M_{H}(\theta)=\left(\begin{array}{ccc}
\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- But this magnet is curved and therefore not easy to build In particular, the ends are "tilted" to be \perp to design trajectory

Sector and Rectangular Bends

- Sector bend (sbend)
- Beam design entry/exit angles are \perp to end faces

- Simpler to conceptualize, but harder to build
- Rectangular bend (rbend)
- Beam design entry/exit angles are half of bend angle

- Easier to build, but must include effects of edge focusing

Dipole End Angles

- Different transverse positions see different B field!
- Particles displaced by +x see B field later than design
- Particles displaced by -x see B field earlier than design

Dipole End Angles

$\alpha>0$

- We treat general case of symmetric dipole end angles
- Superposition: looks like wedges on end of sector dipole
- Rectangular bends are a special case

Kick from a Thin Wedge

- The edge focusing calculation requires the kick from a thin wedge

$$
\Delta x^{\prime}=\frac{B_{z} L}{(B \rho)}
$$

What is L ? (distance in wedge)

$$
\begin{gathered}
\tan \left(\frac{\alpha}{2}\right)=\frac{L / 2}{x} \\
L=2 x \tan \left(\frac{\alpha}{2}\right) \approx x \tan \alpha
\end{gathered}
$$

$$
\text { So } \Delta x^{\prime}=\frac{B_{z} \tan \alpha}{(B \rho)} x=\frac{\tan \alpha}{\rho} x
$$

Quadrupole-like defocusing term, linear in position

Dipole Matrix with Ends

- The matrix of a dipole with thick ends is then

$$
\begin{gathered}
M_{\text {sector dipole }}\left(x, x^{\prime}, \delta\right)=\left(\begin{array}{ccc}
\cos \theta & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{1}{\rho} \sin \theta & \cos \theta & \sin \theta \\
0 & 0 & 1
\end{array}\right) \\
M_{\text {end lens }}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
\frac{\tan \alpha}{\rho} & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
M_{\text {edge-focused dipole }}=M_{\text {end lens }} M_{\text {sector dipole }} M_{\text {end lens }} \\
M_{\text {edge-focused dipole }}=\left(\begin{array}{ccc}
\frac{\cos (\theta-\alpha)}{\cos \alpha} & \rho \sin \theta & \rho(1-\cos \theta) \\
-\frac{\sin (\theta-2 \alpha)}{\rho \cos ^{2} \alpha} & \frac{\cos (\theta-\alpha)}{\cos \alpha} & \frac{\sin (\theta-\alpha)+\sin \alpha}{\cos \alpha} \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

- Rectangular bend is special case where $\alpha=\theta / 2$

What About Vertical Edge Focusing?

- get $\cos (\alpha)$ from integral length
- Quadrupole-like focusing

$$
\begin{aligned}
& \text { igth } \\
& \Delta y^{\prime}=\frac{\left(-B_{x} y \sin \alpha / l\right)(l / \cos \alpha)}{(B \rho)}=-\frac{\tan \alpha}{\rho} y
\end{aligned}
$$

========== Almost There ==========

Matrix Example: Strong Focusing

- Consider a doublet of thin quadrupoles separated by drift L

$$
\begin{gathered}
M_{\text {doublet }}=\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f_{D}} & 1
\end{array}\right)\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f_{F}} & 1
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{L}{f_{F}} & L \\
\frac{1}{f_{D}}-\frac{1}{f_{F}}-\frac{L}{f_{F} f_{D}} & 1+\frac{L}{f_{D}}
\end{array}\right) \\
\frac{1}{f_{\text {doublet }}}=\frac{1}{f_{D}}-\frac{1}{f_{F}}-\frac{L}{f_{F} f_{D}} \\
f_{D}=f_{F}=f \quad \Rightarrow \quad \frac{1}{f_{\text {doublet }}}=-\frac{L}{f^{2}}
\end{gathered}
$$

There is net focusing given by this alternating gradient system A fundamental point of optics, and of accelerator strong focusing

Strong Focusing: Another View

$M_{\text {doublet }}=\left(\begin{array}{cc}1 & 0 \\ \frac{1}{f_{D}} & 1\end{array}\right)\left(\begin{array}{cc}1 & L \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}1 & 0 \\ -\frac{1}{f_{F}} & 1\end{array}\right)=\left(\begin{array}{cc}1-\frac{L}{f_{F}} & L \\ \frac{1}{f_{D}}-\frac{1}{f_{F}}-\frac{L}{f_{F} f_{D}} & 1+\frac{L}{f_{D}}\end{array}\right)$
incoming paraxial ray $\quad\binom{x}{x^{\prime}}=M_{\text {doublet }}\binom{x_{0}}{0}=\binom{1-\frac{L}{f_{F}}}{\frac{1}{f_{D}}-\frac{1}{f_{F}}-\frac{L}{f_{F} f_{D}}} x_{0}$
For this to be focusing, x^{\prime} must have opposite sign of x

$$
f_{F}=f_{D} \quad x^{\prime}<0 \quad \text { BUT } \quad x>0 \text { iff } f_{F}>L
$$

Equal strength doublet is net focusing under condition that each lens's focal length is greater than distance between them

Strong Focusing Homework

- The previous argument also works when the defocusing quadrupole comes before the focusing quadrupole
- Homework: Calculate the net focusing condition for this system
- Since quadrupoles focus in one plane and defocus in the other, alternating quadrupoles continuously produces a system that is overall net focusing and stable

More Math: Hill's Equation

- Let's go back to our equations of motion for $R \rightarrow \infty$

$$
x^{\prime \prime}+K x=0 \quad y^{\prime \prime}-K y=0 \quad K \equiv \frac{1}{(B \rho)}\left(\frac{\partial B_{y}}{\partial x}\right)
$$

What happens when we let the focusing K vary with s?
Also assume K is periodic in s with some periodicity C

$$
x^{\prime \prime}+K(s) x=0 \quad K(s) \equiv \frac{1}{(B \rho)}\left(\frac{\partial B_{y}}{\partial x}\right)(s) \quad K(s+C)=K(s)
$$

This periodicity can be one revolution around the accelerator or as small as one repeated "cell" of the layout (Such as a FODO cell in the previous slide)

The simple harmonic oscillator equation with a periodically varying spring constant $\mathrm{K}(\mathrm{s})$ is

Hill's Equation Solution Ansatz

$$
x^{\prime \prime}+K(s) x=0 \quad K \equiv \frac{1}{(B \rho)}\left(\frac{\partial B_{y}}{\partial x}\right)(s)
$$

- Solution is a quasi-periodic harmonic oscillator

$$
x(s)=A w(s) \cos \left[\phi(s)+\phi_{0}\right]
$$

where $\mathrm{w}(\mathrm{s})$ is periodic in C but the phase ϕ is not!!
Substitute this educated guess ("ansatz") to find

$$
\begin{gathered}
x^{\prime}=A w^{\prime} \cos \left[\phi+\phi_{0}\right]-A w \phi^{\prime} \sin \left[\phi+\phi_{0}\right] \\
x^{\prime \prime}=A\left(w^{\prime \prime}-w \phi^{2}\right) \cos \left[\phi+\phi_{0}\right]-A\left(2 w^{\prime} \phi^{\prime}+w \phi^{\prime \prime}\right) \sin \left[\phi+\phi_{0}\right] \\
+K(s) x=-A\left(2 w^{\prime} \phi^{\prime}+w \phi^{\prime \prime}\right) \sin \left(\phi+\phi_{0}\right)+A\left(w^{\prime \prime}-w \phi^{\prime 2}+K w\right) \cos \left(\phi+\phi_{0}\right)=0
\end{gathered}
$$

For $w(s)$ and $\phi(s)$ to be independent of ϕ_{0}, coefficients of \sin and cos terms must vanish identically

Courant-Snyder Parameters

$$
\begin{gathered}
2 w w^{\prime} \phi^{\prime}+w^{2} \phi^{\prime \prime}=\left(w^{2} \phi^{\prime}\right)^{\prime}=0 \quad \Rightarrow \quad \phi^{\prime}=\frac{k}{w(s)^{2}} \\
w^{\prime \prime}-\left(k^{2} / w^{3}\right)+K w=0 \quad \Rightarrow \quad w^{3}\left(w^{\prime \prime}+K w\right)=k^{2}
\end{gathered}
$$

- Notice that in both equations $w^{2} \propto k$ so we can scale this out and define a new set of functions, Courant-Snyder Parameters or Twiss Parameters

$$
\begin{aligned}
& \beta(s) \equiv \frac{w^{2}(s)}{k} \\
& \alpha(s) \equiv-\frac{1}{2} \beta^{\prime}(s) \\
& \gamma(s) \equiv \frac{1+\alpha(s)^{2}}{\beta(s)}\left.\begin{array}{c}
\phi^{\prime}=\frac{1}{\beta(s)} \phi(s)=\int \frac{d s}{\beta(s)} \\
\begin{array}{c}
\beta(s), \alpha(s), \gamma(s) \text { are all periodic in } C \\
\phi(s) \text { is not periodic in } C
\end{array} \\
\hline
\end{array}\right]
\end{aligned}
$$

Towards The Matrix Solution

- What is the matrix for this Hill's Equation solution?

$$
x(s)=A \sqrt{\beta(s)} \cos \phi(s)+B \sqrt{\beta(s)} \sin \phi(s)
$$

$\phi^{\prime}=\frac{1}{\beta(s)}$

$$
\begin{aligned}
& x^{\prime}(s)=\frac{1}{\sqrt{\beta(s)}}\{[B-\alpha(s) A] \cos \phi(s)-[A+\alpha(s) B] \sin \phi(s)\} \\
& A=\frac{x_{0}}{\sqrt{\beta(s)}} \quad B=\frac{1}{\sqrt{\beta(s)}}\left[\beta(s) x_{0}^{\prime}+\alpha(s) x_{0}\right]
\end{aligned}
$$

This all looks pretty familiar and pretty tedious...
We have done this many times so we skip to the solution

$$
\binom{x}{x^{\prime}}_{s_{0}+C}=\left(\begin{array}{cc}
\cos \Delta \phi_{C}+\alpha(s) \sin \Delta \phi_{C} & \beta(s) \sin \Delta \phi_{C} \\
-\gamma(s) \sin \Delta \phi_{C} & \cos \Delta \phi_{C}-\alpha(s) \sin \Delta \phi_{C}
\end{array}\right)\binom{x}{x^{\prime}}_{s_{0}}
$$

$$
\Delta \phi_{C}=\int_{s_{0}}^{s_{0}+C} \frac{d s}{\beta(s)}
$$

Interesting Observations

$$
\binom{x}{x^{\prime}}_{s_{0}+C}=\left(\begin{array}{cc}
\cos \Delta \phi_{C}+\alpha(s) \sin \Delta \phi_{C} & \beta(s) \sin \Delta \phi_{C} \\
-\gamma(s) \sin \Delta \phi_{C} & \cos \Delta \phi_{C}-\alpha(s) \sin \Delta \phi_{C}
\end{array}\right)\binom{x}{x^{\prime}}_{s_{0}}
$$

$$
\Delta \phi_{C}=\int_{s_{0}}^{s_{0}+C} \frac{d s}{\beta(s)}
$$

- $\Delta \phi_{C}$ is independent of s : betatron phase advance again
- Determinant of matrix M is still 1! (Check!)
- Still looks like a rotation and some scaling
- M can be written down in a beautiful and deep way

$$
M=I \cos \Delta \phi_{C}+J \sin \Delta \phi_{C} \quad I=\left(\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right) \quad J=\left(\begin{array}{cc}
\alpha(s) & \beta(s) \\
-\gamma(s) & -\alpha(s)
\end{array}\right)
$$

$$
J^{2}=-I \quad \Rightarrow \quad M=e^{J(s) \Delta \phi_{C}}
$$

and remember $x(s)=A \sqrt{\beta(s)} \cos \left[\phi(s)+\phi_{0}\right]$

========== Once Again $)$ =========

