Your name and table number: _

Please show your work, write neatly, write units, and box your answers. There are a total of ? questions worth FIFTY points with ? bonus points.

Useful Equations/Concepts

Bar magnetic field lines go from North to South (outside magnet) Force on charged particle from magnetic field: $\vec{F} = q\vec{v} \times \vec{B}$ Force on current from magnetic field: $\vec{F} = I\vec{l} \times \vec{B}$ Cyclotron radius: $r = \frac{mv}{aB}$ Cyclotron frequency: $f = \frac{qB}{2\pi m}$ Biot-Savart Law: $d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \vec{r}}{r^2}$ Magnetic field of infinite line current: $B = \frac{\mu_0 I}{2\pi r}$ in right hand circles around current Magnetic field at x along centerline of loop of radius a: $B = \frac{\mu_0 I a^2}{2x^3}$ Ampere's Law: $\int \vec{B} \cdot d\vec{r} = \mu_0 I_{\text{enclosed}}$ Magnetic field of a solenoid with n turns/unit length: $B = \mu_0 n I$ Faraday's Law: $\mathcal{E} = V = -\frac{d\Phi_{\rm B}}{dt}$ Magnetic flux: $\Phi_{\rm B} \equiv \int \vec{B} \cdot d\vec{A} = BA\cos\theta$ Ohm's Law: V = IRDefinition of Capacitance: $C \equiv \frac{Q}{V}$ Self-Inductance: $L \equiv \frac{\Phi_{\rm B}}{I}$ Voltage/EMF across Inductor: $\mathcal{E}_{L} = -L \frac{dI}{dt}$

Self-Inductance of solenoid of length l, cross-section area A: $L = \mu_0 n^2 A l$

Useful Geometry Equations

Circle circumference: $2\pi r$	Circle area: πr^2
Sphere surface area: $4\pi r^2$	Sphere volume: $\frac{4}{3}\pi r^3$
Cylinder surface area: $2\pi r^2$ (ends) $+ 2\pi rL$ (side)	Cylinder volume: $\pi r^2 L$

Useful Constants and Units

$\mu_0 = 4\pi \times 10^{-7} \text{ T-m/A}$		Electron charge: $e = -1.6 \times 10^{-19} \text{ C}$
Electron mass: $m_{\rm e} = 9.11 \times 10^{-31}$	kg	Proton mass: $m_{\rm p} = 1.67 \times 10^{-27} \mathrm{kg}$
Magnetic Field: Tesla [T, $1 \text{ T} = 1$	10^4 Gauss]	Voltage/Electric Potential: Volt [V]
Electric Current: Ampere $[A, 1 A = 1 C/s]$		
Inductance: Henry [H]	Magnetic Flux:	Weber [Wb, 1 Wb = 1 T m ² = 1 V s]