USPAS Graduate Accelerator Physics Homework 1

Due date: Tuesday January 23, 2024

1 Pion decay kinematics (Peggs/Satogata Modified Exercise 1.10)

Consider a charged pion decaying into a muon plus an antineutrino:

- (a) (3 points) In the rest system of the pion, what are the energies and momenta of the muon and antineutrino?
- (b) (3 points) Since neutrinos have now been discovered to have mass, how high must a pion beam energy be to produce some neutrinos at rest during their decays? Assume a rest mass of 0.01 eV/c^2 for muon neutrinos (and antineutrinos); you do not need to recalculate results from part (a).
- (c) (4 points) For a moving pion with total energy $U_{\pi} = \gamma m_{\pi}c^2$ find an expression for the direction, θ_{μ} of the muon relative to the pion in the lab in terms of the angle θ_{μ}^* in the in the pion's rest system.

2 EIC frequency/field (Peggs/Satogata Modified Exercise 2.3)

The US electron-ion collider (EIC) hadron storage ring (HSR) will collide various ion species with polarized electrons. These ion species will include fully stripped gold ions (A=197, Z=79) at various gold ion *total* energies, including $E_{Au}=110 \text{ GeV/nucleon}$. The HSR circumference for these gold ions will be 3832.915 m. Assume the rest mass of a fully stripped gold ion is $197 \times 0.931336 \text{ GeV/c}^2$.

- (a) (4 points) Calculate the revolution frequency $f_{\rm rf}$ of a gold ion at the injection energy of $E_{\rm inj}=10.5$ GeV/nucleon, and at the collision energy of $E_{\rm coll}=110$ GeV/nucleon. What is the change in revolution frequency for particles accelerated from $E_{\rm inj}$ to $E_{\rm coll}$?
- (b) (3 points) What are the gold ion rigidities $(B\rho)$ at E_{inj} and E_{coll} ?
- (c) (3 points) If we assume that there are 192 identical dipoles per ring, each of length L = 9.7 m, what are the required dipole fields at E_{inj} and E_{coll} ?

(flip the page...)

3 Lithium lens (Peggs/Satogata Modified Exercise 6.8: yes, you can do it even after the first day of lectures!)

(10 points) A lithium lens of length l and radius a has a constant total current I flowing through its end caps with uniform current density as pictured in Fig. 1. (So in this figure, the current is flowing from either left to right *or* right to left.) This current creates a magnetic induction $\vec{B}(r)$ within the lithium lens.

Consider a beam of antiprotons with momentum p that are passing left to right through this lithium lens. (Yes, the antiprotons actually pass through the lithium material fairly easily.)

- (a) What is the magnetic induction $\vec{B}(r)$ in the lithium lens?
- (b) What is the focal length of this lens for the antiprotons? (Recall that the focal length for a focusing lens is defined as the distance at which incoming parallel rays converge on the center axis.)
- (c) Does the lithium lens current need to flow from left to right or right to left for the lens to focus this antiproton beam?

Figure 1: Lithium lens diagram. A uniform total current I is applied through the end caps (that is, pointing left to right or right to left) of the lithium cylinder to create a focusing lens.