USPAS Graduate Accelerator Physics Homework 2

Due date: Wednessday January 24, 2024

1 Twiss Parameter Propagation

(a) Prove Equations 3.34 and 3.35 .

2 Drift Twiss Parameters

Consider a long field-free reqgion adjacent to a collision point.
(a) Use Equation 3.34 to show that the β-function evolves with s like $\beta(s)=\beta^{\star}+\frac{\left(s-s_{0}\right)^{2}}{\beta^{\star}}$.
(b) How does $\alpha(s)$ evolve?
(c) How does the phase $\phi(s)$ evolve?
(d) What is the largest phase advance possible, across a field-free region?
(e) Why are optics often displayed as $\sqrt{\beta}$, rather than β vs s ?

3 FODO Beta/Dispersion Ratio

Consider the close connection between η_{x} and β_{x} in well-matched cells.
(a) Construct a lattice file (eg using MADX) to represent a FODO cell similar to that shown in textbook Figure 3.5 , with thin quads of strength $\pm q$ separating 10 short dipoles of bend angle $\theta / 10$. (It is not necessary to include any drifts, unless you wish to do so.)
(b) Set the value of q to deliver a matched phase advance $\Delta \phi$ of 60 or 90 degrees.
(c) Use eg MADX to generate a table of η_{x} and β_{x} values between $s=0, s=2 L$
(d) Does the ratio $\eta_{x} / \sqrt{\beta_{x}}$ for the lattice appear approximately constant? What is its approximate value (arithmetic mean, perhaps)?
(e) What is the largest deviation of $\eta_{x} / \sqrt{\beta_{x}}$ from the mean value? What percentage of the mean value is this? At which lattice element does it occur?

4 Twiss Parameters from 6D M Matrix

Suppose that the following one-turn matrix M transforms motion from $s=0$ to $s=C$ around the circumference of an accelerator:

$$
\left(\begin{array}{cccccc}
-1.05746 & -3.59421 & 0.00000 & 0.00000 & 0.00000 & 35.44680 \\
0.00189 & -0.93923 & 0.00000 & 0.00000 & 0.00000 & -0.82369 \\
0.00000 & 0.00000 & 1.72622 & -72.45113 & 0.00000 & 0.00000 \\
0.00000 & 0.00000 & 0.05149 & -1.58161 & 0.00000 & 0.00000 \\
-0.80399 & -36.25338 & 0.00000 & 0.00000 & 1.00000 & -50.03916 \\
0.00000 & 0.00000 & 0.00000 & 0.00000 & 0.00000 & 1.00000
\end{array}\right)
$$

(a) What are the fractional parts of the horizontal and vertical tunes?
(b) What are the horizontal Twiss functions (β, α, γ) at $s=0$?
(c) What is the dispersion function and its slope, η and η^{\prime}, at $s=0$?

