USPAS Graduate Accelerator Physics Homework 7

Due date: Thursday February 1, 2024

1 ESS RF cavity cell count

Use the synchronism factor calculator at http://www.toddsatogata.net/2024-USPAS/lab/ Synchro.html to help with the following problem.

The high energy end of an ESS-like proton linac is being designed using either 2 or 3 families of elliptical cell cavities to accelerate from a kinetic energy of 200 MeV to 2.0 GeV . The cavities in each family $i=1,2,(3)$ all have the same geometric beta, $\beta_{i, G}$. Family i accelerates from $\beta_{i, \min }$ to $\beta_{i, \max }$, so that $\beta_{1, \max }=\beta_{2, \min }$, et cetera. The synchronism factor $S\left(\beta / \beta_{G}, N\right)$ measures the efficiency with which each cavity accelerates, where N is the number of cells per cavity, with a maximum value of $S(1, N)=1$.
(a) What are the values of γ and β at 200 MeV and 2.0 GeV ?
(b) Assuming that $S(x, N) \approx S(1 / x, N)$ for any N, what are the optimum $\beta_{\text {tran }}$ values at which to transition from one family to the next, for both 2 and 3 families?
(c) What are the optimum β_{G} values for those 2 or 3 families?
(d) Using those $\beta_{\text {tran }}$ and β_{G} values, what are the minimum values of the synchronism factor for 2 or 3 families, with $N=5,7$ or 9 ? How reasonable is the assumption that $S(x, N) \approx S(1 / x, N) ?$
(e) How would you decide whether to use 2 or 3 families? What are the competing cost and performance drivers?

2 Linearized RF Transport (Modified Peggs-Satogata 13.2, excluded after assignment)

Expand Equation 13.18,

$$
\begin{equation*}
\delta W_{n}=q\left(V_{A, n} \cos \phi_{n}-V_{A, r, n} \cos \phi_{r, n}\right)+\delta W_{n-1} \tag{2.1}
\end{equation*}
$$

to derive the linearised matrix $M_{T C}$ for a thin cavity:

$$
\begin{equation*}
\binom{\delta \phi}{\delta W}_{\mathrm{out}}=M_{T C}\binom{\delta \phi}{\delta W}_{\mathrm{in}} \tag{2.2}
\end{equation*}
$$

Note that for a thin cavity, $\delta \phi$ does not change, much like transverse position x or y does not change going through a thin quadrupole.

3 Chicane Bunch Compressor (Modified Peggs-Satogata 14.1)

Figure 1 sketches the layout of a simple four-dipole chicane in which the bend angle θ is small, and a is the distance between the first and second dipoles.

Figure 1: A simple four-dipole chicane, with no quadrupoles.
(a) Following Equation 14.18 in the book, show that

$$
\begin{equation*}
M_{56} \equiv \frac{d z_{2}}{d \delta_{1}}=-2 a \theta^{2} \tag{3.1}
\end{equation*}
$$

(b) BONUS: Following the Taylor expansion of the path length in Equation 14.19 in the book, show that

$$
\begin{equation*}
T_{566}=-\frac{3}{2} M_{56} \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{5666}=2 M_{56} \tag{3.3}
\end{equation*}
$$

