

Lecture 11: Synchrotron Radiation – Classical Damping

Steve Peggs January 30, 2024 "At GE [in 1947], Pollack ... assemble[d] ... a 70-MeV electron synchrotron to test the idea [of the phasestability principle]. Fortunately ... the doughnutshaped electron tube was transparent, which allowed a technician to look around the shielding with a large mirror to check for sparking in the tube. Instead, he saw a bright arc of light, which the GE group quickly realised was actually coming from the electron beam."

A.L.Robinson, ".. History of Synchrotron Radiation".

- A) Spectrum & distribution pattern
- B) Energy loss, longitudinal damping
- C) Continuous acceleration
- D) Transverse damping, partition nos.

Table 11.1 Partial chronological list (2016)

$$E = 3 \text{ GeV}$$

$$Me = 0.511 \text{ MeV}$$

$$Y = 6,000$$

	Operating years	Name	Location	${ m Energy} \ [{ m GeV}]$
-	1961-	SURF	Gaithersburg	0.18
	1968 - 87	Tantalus	Madison	0.24
a 1	1972 - 75	Solidi Roma	Frascati	1.0
(0040)	1973 - 88	ACO	Orsay	0.54
(2016)	1973-	\mathbf{SSRL}	Stanford	3.0
	1974 - 93	DORIS	Hamburg	5.0
	1974-	INS-SOR	Tokyo	0.3
	1979-	CHESS	Ithaca	5.5
	1981 - 2006	DCI	Orsay	1.0
	1997-	HSRC	Hiroshima	0.7
	1982 - 2014	NSLS-I	Upton	2.8
	1982-	Photon Factory	Tsukuba	2.5
	1986-	MAX-I	Lund	0.55
	1987 - 2006	Super-ACO	Orsay	0.8
	1991-	\mathbf{BSRF}	Beijing	2.5
	1991-	NSRL	Hefei	0.8
•	1992-	\mathbf{ESRF}	Grenoble	6.0
	1993-	ALS	Berkeley	1.9
01	1993 - 2012	DORIS III	$\operatorname{Hamburg}$	5.0
\sim V	1993-	ELETTRA	Trieste	2.4
	1995-	APS	Lemont	1.9
	1997 -	HSRC	$\operatorname{Hiroshima}$	0.7
	1997 -	LNLS	Campinas	1.4
	1997-	Spring-8	Sayo	8.0
	1998-	BESSY II	Berlin	1.7
	1999-	Indus 2	Indore	2.5
	1999-	SIBIR	Moscow	2.5
	2000-	ANKA	Karlsruhe	2.5
	2001-	SLS	Villigen	2.8
	2004-	CLS	Saskatoon	2.9
	2004-	SLRI	Suranari	1.2
	2006-	Australian Synch.	Clayton	3.0
	2006-	Diamond	Abingdon	3.0
	2006-	SOLEIL	Orsay	3.0
	2007-	SSRF	Shanghai	3.5
	2009-	PETRA III	Hamburg	6.5
	2010-	ALBA NGLO H	Barcelona	3.0
	2015-	NSLS-II	Upton	3.0
	2015-	Taiwan PS	HSINCHU	3.0
Accelerator Physics 1	2010-	MAA-IV	Lund	3.0
r r r r r r r r r r				

A) Spectrum & distribution pattern

11.1 Larmor radiation in lab & co-moving frames

more conveniently

$$\begin{array}{c}
F = 1 & e^{4} & B^{2}E^{2} \\
\hline & & & & & & & \\
\hline & & & & & & \\
\hline & & & & \\
\hline$$

11.2 Universal shape of the SR spectrum

NGULAR PISTRIBUTION in synchrotron plane 5 x 2/6) dP 0 6 6 $(1+\chi^2)^2$ 3 HEADCIGHT EF

11.3 Radiation pattern for 3 values of $\beta \& \gamma$

B) Energy loss, longitudinal damping

ENERGY LOSS PER TURN $1 \text{ particle}, 1 \text{ turn } U = \oint P(s) \cdot \frac{ds}{s}$ gives IDEALLY TU = CgE3. CGZGZ where $\langle \rangle$ angle brackets denote a ring average and G = f is local bending strength $C_g = 4 \text{H} \frac{v_s c_s}{(mc^2)^3} classical radius$ and $= 8.85 \times 10^{-5} (m. GeV^3) ELECTRC$ $= 7.78 \times 10^{-18} (m. GeV^3) PROTONS$ ELECTRONS MUONS

Accelerator Physics, USPAS 2024

EG: ISOMAGNETIC RING - All dipples have save bending vadius P $\langle G^{n} \rangle = \frac{\oint G^{n} ds}{\oint ds}$ $|\langle G' \rangle_{150} = \frac{1}{R p^{n-1}} / \text{where } ZTTR = C$ and $V = C_g = \xi_g$ ELECTRONS [U_o[heV] = 88.5 Eo[GeV]/150] P[m] EG1: B= 0.4T, E=3GOV = Vo=0.29 MeV NSS-TT EG2:50 TeV protons, P=14 km = Us= 3.5 Mar Accelerator Physics, USPAS 2024 3.5 Mar FCC)VLHC

LONGITUDINAL DAMPING Prevolves of SLIP FACTOR $M_s = \frac{1}{\gamma_z} - \frac{1}{\beta_z}$ NOW USE "COMPACTION FACTOR" (Electron speak) $|\chi = \langle \chi G \rangle = \frac{1}{\chi^2}$ So longitudinal displacement Z evolves litie $\left| Z_{n+1} = Z_n - \propto C \cdot S_n \right|$ (A)On every furn must replenish (an averge) energy Toss TOTAL REVOLTAGE SYNCHRONOUS $\int_{0} \Xi e V. S.u(\emptyset_{S})$ PHASE

11.4 Energy gain from RF for an electron of phase ϕ

IF longitudinal oscillations areston (synchrotron ture Qs is small) coubire (A)-e(B) to give where t is time (seconds)² S = 0Q: Soloton? Damped happoine oscillator!

TION SOLUTION /ν\ \bigcirc The QO G 0

11.5 Energy loss per turn U vs momentum offset δ

C) Continuous acceleration

TIME OUT - Briefly return to ODSERVATIVE notion

$$V(S=0)$$
 NO radiation, = (PROTONS?)
 $PS \neq 0$ ACCELERATION !!
Hamiltonian
 $[H(P,S) = \frac{1}{2} \times W_{RF} \cdot S - \frac{2V}{TE_0} (code) + p(Sin(B))$
reproduces (A) - (B) (withe U-0) + hough canonical
equations
 $\frac{dS}{dE} = \frac{\partial H}{\partial E}$, $\frac{dP}{dE} = -\frac{\partial H}{\partial S}$
NOV we can visibilize the notion

Accelerator Physics, USPAS 2024

11.7 Damped MOTION under acceleration & radiation

D) Transverse damping, partition numbers

VERTICAL DAMPING V is easier to understand than H - My iszaro!. -Consider an electron losing AV energy in a single dipole - ... and (in effect) recovering AU for RF system

VERTICAL BETATION OSCILLATIONS DAMP

$$\begin{aligned} y = a_y \cdot e^{-\frac{1}{y_y}} \cos(2\pi Q_y \cdot \frac{t}{y}) \\ T_y = 2\tau E_0 \\ V_0 \end{aligned}$$
Characteristic time!

$$\begin{aligned} Y_y = 2\tau E_0 \\ V_0 \end{aligned}$$
Twice as long as it
would take to lose Eo at Vo perturn

.

PARTITION NUMBERS

The H,V, IS damping times are connected (e.g. through horizontal dispersion) by the Partition numbers Jx, y, s $T_{x,y,s} = \frac{T_0 G}{J_{x,y,s}}$ characteristic time where "it can be shown" that $\left| J_{X} + J_{y} \neq J_{5} = 4 \right| \quad J_{y} \geq 1$ EG NSCC-II, E0=3GDV, V0=0-29MeV Accelerator Physics, USPAS 2024 $\overrightarrow{D} = 7,000 + 1/15$ Peggs & Satogata

3-D STABILITY Both Jx e Js must be postive $J_{x} = [-D]$ $T_s = 2 + 9$ $(MG^3) + 2\langle M$ $\langle G^2 \rangle$ SEPARATEA FUNGTION MAGNETS $\sim \frac{M}{n} \sim \frac{2}{\pi} < < 1$ GK = 050 Deway SPAS 2024 (but lage whiles₃₁ and Stahility 75 "Puaranted" Peggs & Satogata

EG COMBINED FUNCTION OPTICS D can easily be of order 1 if GK = 0 This doesn't matter - in hadron vings: some are CF, some are FE - if electron storage time is short : e.g. Cornell electron ity. sychotra Q: What provents electron bean sizes vanishing? $f_{t} \neq 0$

Accelerator Physics, USPAS 2024