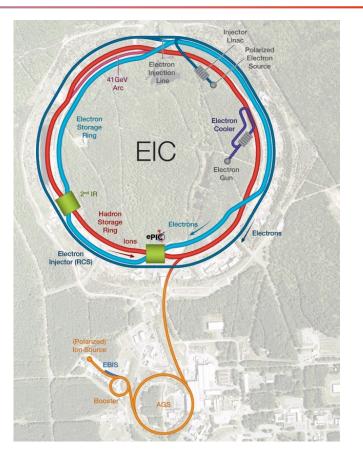
Development of a Timing and Data Link for EIC Common Hardware Platform

Brookhaven National Laboratory

Jefferson Lab


U.S. DEPARTMENT OF

Paul Bachek – Electrical Engineer pbachek@bnl.gov

October 23rd, 2023

EIC Project Overview

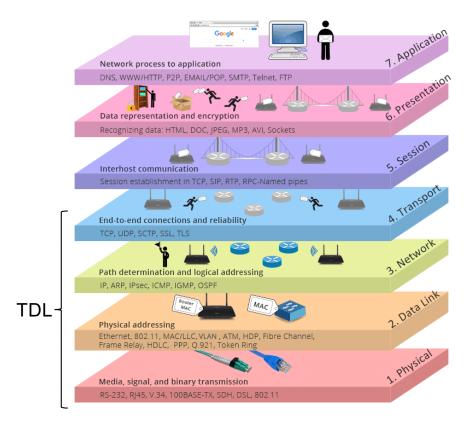
- Upgrade to RHIC
 - Hadron Storage Ring
 - Electron Storage Ring
 - Rapid Cycling Synchrotron
- Subsystems
 - Electron Gun
 - Electron Cooler
 - Injector Linac
 - Electron Beam Ion Source
- Existing Systems
 - Linac
 - Booster
 - AGS

RHIC Timing Links

- Low Level RF Update Link
 - RF system event and data distribution
 - Supports bidirectional data transfer
- Event Link
 - Broadcasts 8-bit event codes
- Real Time Data Link
 - Distributes timestamp data
- Beam Synchronous Link
 - Carrier synchronous to the machine revolution frequency
- Accelerator Master Clock Signal
 - RF clock distributed to systems

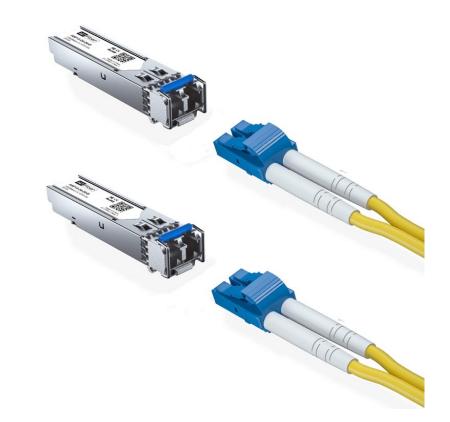
Timing Data Link Goals

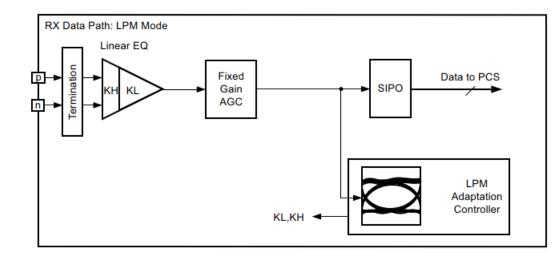
- Consolidate existing timing links
- Deterministic distribution of critical timing data
- Distribution of Accelerator Master Clock
- Packet filtering based on event ID and data
- Bidirectional data transfer for distributed feedback
- Modular and configurable
- Scalable to meet the needs of the large machine and various subsystems
- EIC first run planned for 2031
 - Must have verified prototype hardware by Q1 2024 for Technical Review


Timing Data Link Requirements

- Synchronized timestamps with 1ns resolution
- RF clock distribution with < 10ps rms additive phase jitter
- Data throughput of 6.4 Gbps on each link
- Able to support an arbitrarily large number of network endpoints
- Automatic link latency compensation
- Distribution of beam diagnostic data
 - Beam position/loss monitors
 - Beam synchronous events
- Distribution of machine critical information
 - Master permit link
 - Machine protection statuses
 - Subsystem permit signals

Timing Data Link Specification


- Custom networking protocol
- Defines Layers 1-4 of the OSI model
 - Physical Layer
 - · Cables
 - Electrical signaling
 - Symbol encoding
 - Datalink Layer
 - · Data word framing
 - Clock synchronization
 - Network Layer
 - Packet routing and filtering
 - Network topology
 - Transport Layer
 - Reliable timestamping
 - Event and data synchronization


Physical Layer

- Transfers data bytes across the physical medium
- Single-mode or Multi-mode fiber
- SFP+ modular transceivers
- Electrical CML data pairs for TX/RX
- Line rate 8 Gbps
 - Synchronous to 100 MHz Accelerator Master Oscillator
 - Receiver recovers clock
- Encodes bytes into 8b/10b symbols
- Bytes transferred at 800 MB/s

Physical Layer

- Xilinx GTH/GTY transceiver front end with DFE disabled
 - Enable at startup
 - Read stable equalization values via DRP
 - Disable DFE (AGC)
 - Write previously read equalization values
- This allows for good BER
 - Find the center of the eye
- Reduces jitter to acceptable levels (less than 10ps rms)
- Recovered clock can then be forwarded to RF system or jitter attenuator for more cleaning up

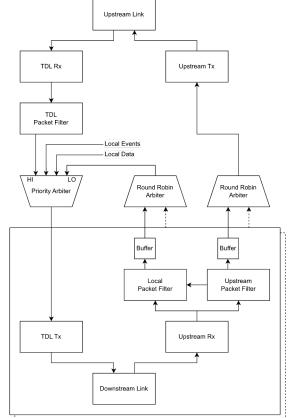
Datalink Layer

- Transfers 64-bit data words between devices
 - Big endian format
- Comma detection to algin words
 - Comma in least significant byte
- Word alignment provides 100 MHz recovered clock synchronization
 - Not trivial
- No addressing is implemented
 - · Words are transmitted point to point between linked systems
- Out of band signaling
 - K-symbols
 - Link latency measurement

Clock Recovery Phase Alignment

- RX SIPO input is actually a dual edge sensitive flip flop
- Can lock to bit clock on either edge on power up
- User can PMA shift RX clock using bitslip but stuck on whatever edge CDR is locked to
- Disable elastic buffer
- Must "reset-roulette" to catch desired edge for clock synchronization
- RXRECCLKOUT provides -120dB of additive phase jitter
 - Connect to TX user clock for link forwarding

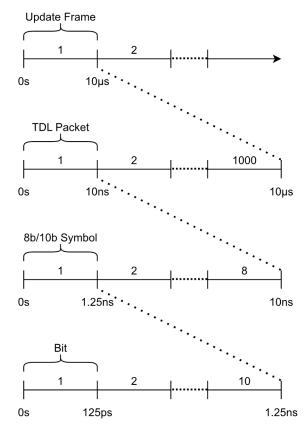
RX PMA RX PCS RXP/N RX DATA RX DATA to Downstream PCS Blocks CDR SIPO RX Polarity Control ÷D Phase RXOUTCI KPCS (1,2,4,8 Interp. (2,4,8) (4.5) 16,32) RX PROG DIV RXPLLCLKSEL RXRECCLKOUT 10 11 00 Delay OPLI 1CLK RXOUTCLKPCS Aligner **QPLLOCLK** RXSYSCLKSEL RXOUTCLK RXOUTCLKPMA CPLL RXPLLREFCLK DIV1 RXPLLREFCLK DIV2 +2 **QPLLOREFCLK** RXPROGDIVCLK QPLL1REFCLK RXDLYBYPASS RXOUTCLKSEL RXOUTCLKFABRIC REFCLK Sel **REFCLK** Distribution Output to GTYE3/4 COMMON and GTYE3/4 CHANNEL IBUFDS GTE3/4 MGT REFCLK[0/1]P MGT REFCLKI0/11N ODIV2 Output Clock to BUFG GT REFCLK HROW CK SEL


GTYE3/4 CHANNEL (GTY Transceiver Primitive)

Electron-Ion Collider

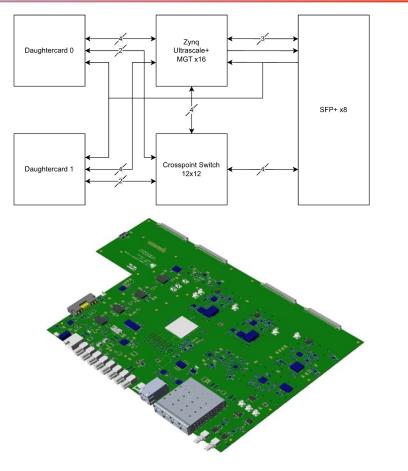
X19663-081717

Network Layer

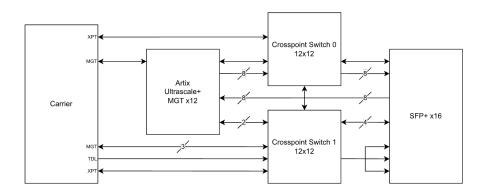

- Routes 64-bit TDL packets between devices
 - 16-bit packet ID and 48-bit data field
- Network follows a tree structure
- Data fields encode special packet and event IDs
- Deterministic packet transmission when traversing the tree in the downstream direction
- Upstream data transmission supported but without guaranteed deterministic timing
- Timing Data Generators broadcast events and data
 - Root node is the Global Timing Data Generator
 - Downstream Timing Data Generators rebroadcast and filter
 - Leaf node devices send data to Upstream Timing Data Generators

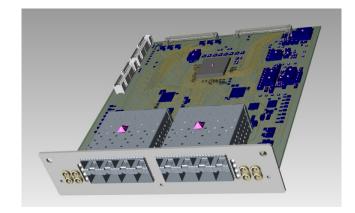
Transport Layer

- Update Frames transmitted at 10µs intervals
 - Followed by a timestamp packet
- Update Frame contains 1000 TDL packet
 - Frames begin with Update Event followed by Timestamp packet
 - At least two idle frames to support byte and word alignment
- Data received during an Update Frame is acted upon when the Update Event arrives to synchronize event and data timing
- Timestamp is encoded with a special packet ID
 - 31-bit seconds field
 - Counts seconds since epoch
 - Allows for a 68-year timespan before rollover
 - 17-bit ticks field
 - Counts 10 us ticks (100,000 ticks per second)


Hardware Implementation

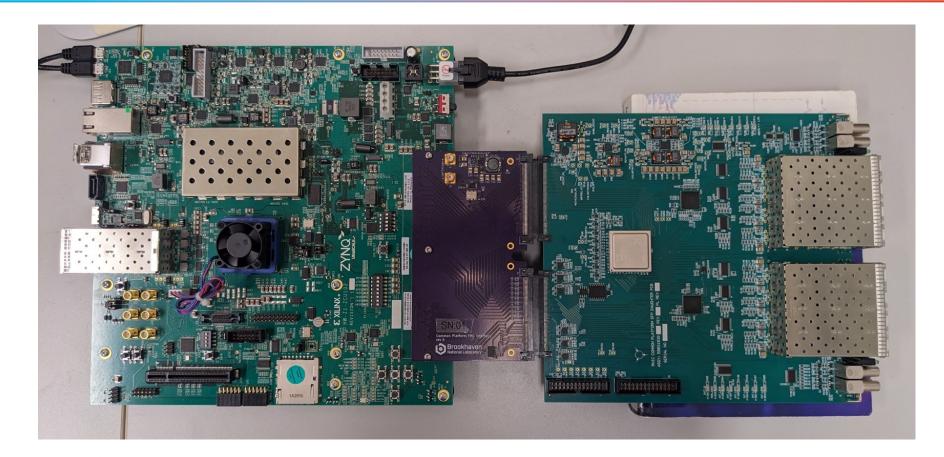
- The EIC Common Hardware Platform
- Carrier Board 2U Chassis
- Modular design with two pluggable daughtercards
- Configurable datapaths for TDL
- Xilinx Ultrascale+ MGTs interface with SFP+
- FPGA handles packet routing and filtering logic
- SFP+ TDL networking daughtercard
- Other special function daughtercards
 - Baseband ADC/DAC
 - RF ADC/DAC
 - Digital I/O

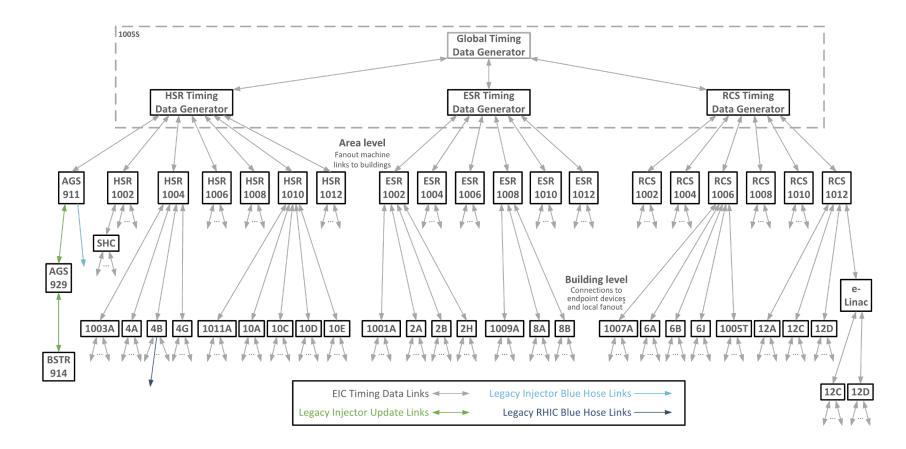

Common Hardware Platform Carrier


- Provides power and clocks to daughtercards
- Clock sources
 - Analog PLL
 - Digital PLL
 - Beam Synchronous
 - External
- SFP+ x8 one for TDL fanout
- Zynq Ultrascale+ with 16 GTH transceivers
- Crosspoint switch 12x12
- Two daughtercard sites each with
 - Four transceiver lanes
 - Two crosspoint switch lanes
 - Chip-to-chip high speed serial bus

Common Hardware Platform SFP+ Daughtercard

- Mates with CHP carrier
- Provides 16 SFP+ ports
 - 13 bidirectional
 - 3 transmit only for TDL fanout
- Two 12x12 crosspoint switches
 - Highly configurable datapaths
- Artix Ultrascale+ FPGA with 12 GTY transceivers
- One transceiver lane dedicated to chipto-chip link to carrier
- FPGA will host packet routing and filtering logic




Timing Data Generator

- CHP carrier chassis with SFP+ daughtercards
 - Can have two, one, or even no SFP+ daughtercards
 - Can mix with other special function daughtercards
- Global TDG is the root node of the tree network
 - Transmits Update Frames and Timestamp Packets
 - · Global timing events and data
 - Support for periodic event generation 1Hz, 10Hz, 720Hz, etc.
- Downstream TDG are subtree nodes
 - Local timing events and data
 - Packet routing and filtering
 - Upstream link aggregation
- Endpoint devices are leaf nodes
 - Can generate feedback data and send upstream
 - Receive TDL and recover Accelerator Master Clock

Test Setup

EIC TDL Network Diagram

Electron-Ion Collider

Project Status

- Common Hardware Platform mechanical mockup chassis and PCBs have been fabricated and verified
 - · Resistive load boards used to test heat dissipation
 - · Fans included to demonstrate airflow
- First prototypes of CHP carrier board PCBs received
 - · Currently being tested
- First prototypes of SFP+ daughtercard PCBs received
 - · Currently being tested
 - Working Timing Data Link clock recovery demonstrated with eval board as link generator
- Initial testing plan
 - Signal integrity check on high speed links
 - Simple loopback test with TDL protocol
 - Communication between devices
 - Integration testing in a tree network